

DEPARTMENT OF VETERAN AFFAIRS ATLANTA VAMC 3700 Crestwood Parkway, Suite 310 Duluth, GA 30096

Specifications

Correct Failing Sanitary Sewer, Water Main, and Fire Protection Deficiencies Tuscaloosa VAMC 3701 Loop Road Tuscaloosa, AL 35404

100% Construction Documents

December 29, 2023

Project Number: 679-21-102

1151 Kildaire Farm Road Cary, NC 27511 (919) 838-7622 Tuscaloosa VAMCDecember 29, 2023Correct Failing Sanitary Sewer, Water Main, FP Deficiencies100% Construction DocumentsTuscaloosa, AL 35404Project No: 679-21-102

SECTION 00 00 00 SEALS PAGE

Ballard CLC James Bryan Butler, PE Registration No. 28875 State of Alabama

 $00 \ 00 \ 00 \ - \ 1$

Tuscaloosa VAMC Correct Failing Sanitary Sewer, Water Main, FP Deficiencies 100% Construction Documents Tuscaloosa, AL 35404

December 29, 2023 Project No: 679-21-102

SECTION 00 00 00 SEALS PAGE

12/21/2023

Apogee Consulting Group Dorell J. Royster, PE Registration No. 39941 State of Alabama

DEPARTMENT OF VETERANS AFFAIRS VHA MASTER SPECIFICATIONS

TABLE OF CONTENTS Section 00 01 10

SECTION NO	DIVISION AND SECTION TITLES	DATE
	DIVISION 00 - SPECIAL SECTIONS	
00 01 15	List of Drawing Sheets	05-20
	DIVISION UI - GENERAL REQUIREMENTS	
01 00 00	Ceneral Requirements	11-21
01 32 16.15	Project Schedules (Small Projects - Design/Bid/Build	11-21
01 33 23	Shop Drawings, Product Data, and Samples	02-23
01 35 26	Safety Requirements	10-22
01 42 19	Reference Standards	11-20
01 45 00	Quality Control	02-21
01 45 29	Testing Laboratory Services	11-18
01 57 19	Temporary Environmental Controls	01-21
01 74 19	Construction Waste Management	04-22
01 81 13	Sustainable Construction Requirements	10-17
	DIVISION 02 - EXISTING CONDITIONS	
		0.1 0.1
02 21 13	Site Surveys	01-21
02 41 00	Demolition	08-17
	DIVISION 03 - CONCRETE	
	DIVISION 05 - CONCRETE	
03 30 53	(Short-Form) Cast-in-Place Concrete	01-21
		01 21
	DIVISION 21- FIRE SUPPRESSION	
21 30 13	Electric-Driven, Fire Pumps	05-15
	DIVISION 25 - INTEGRATED AUTOMATION	
25 10 10	Advanced Utility Metering System	02-10
	DIVISION 31 - EARTHWORK	
21 00 11		10.10
31 20 11	Earthwork (Short Form)	10-12
31 23 19	Dewatering	10-12
31 23 23.33	FIOWADIE FILL	10-12

	DIVISION 32 - EXTERIOR IMPROVEMENTS	
32 05 23	Cement and Concrete for Exterior Improvements	08-16
32 12 16	Asphalt Paving	09-15
	DIVISION 33 - UTILITIES	
33 10 00	Water Utilities	03-17
33 30 00	Sanitary Sewer Utilities	06-13
33 40 00	Storm Sewer Utilities	12-17

---END---

SECTION 00 01 15 LIST OF DRAWINGS

The drawings listed below accompanying this specification form a part of the contract.

Drawing No.	Title
G-001	Cover Sheet
C-001	Legend, General & Utility Notes
C-100	Overall Site Plan
C-101	Partial Site Plan-Demolition & Erosion Control Plan
C-102	Partial Site Plan-Demolition & Erosion Control Plan
C-103	Partial Site Plan-Demolition & Erosion Control Plan
C-104	Partial Site Plan-Demolition & Erosion Control Plan
C-200	Overall Site Plan - Water Line Layout
C-201	Partial Site Plan - Water Line Layout
C-202	Partial Site Plan - Water Line Layout
C-203	Partial Site Plan - Water Line Layout
C-204	Partial Site Plan - Water Line Layout
C-205	Partial Enlarged Plan - Water Line Layout
C-206	Partial Enlarged Plan - Water Line Layout
C-207	Partial Enlarged Plan - Water Line Layout
C-208	Partial Enlarged Plan - Water Line Layout
C-209	Partial Enlarged Plan - Water Line Layout
C-210	Partial Enlarged Plan - Water Line Layout
C-211	Partial Enlarged Plan - Water Line Layout
C-212	Partial Enlarged Plan - Water Line Layout
C-213	Partial Enlarged Plan - Water Line Layout
C-300	Water Valve & Misc. Water Line Details
C-301	PVC Pipe at Conflicts Change in Direction and
	Under Pavement Details
C-302	PVC Water Line Adjustment Details
C-303	Backflow Prevention & Meter Details
C-304	Backflow Prevention Enclosure & Pad Details
C-305	Pavement Repair Details & Misc. Water Line Details
C-306	Water Line Thrust Blocking Details
FX001	Fire Suppression General Information
FX101	Ground Floor / Basement Fire Suppression Demolition
	Plan and Fire Suppression Plan

- - - E N D - - -

---INTENTIONALLY BLANK---

SECTION 01 00 00 GENERAL REQUIREMENTS

1.1 SAFETY REQUIREMENTS

A. Refer to section 01 35 26, SAFETY REQUIREMENTS for safety and infection control requirements.

1.2 GENERAL INTENTION

- A. Contractor shall completely prepare site for building operations, including demolition and removal of existing structures, and furnish labor and materials and perform work for Tuscaloosa Waterline Replacement as required by drawings and specifications.
- B. Visits to the site by Bidders may be made only by appointment with the Medical Center Engineering Officer.
- C. The Architect-Engineers, will render certain technical services during construction. Such services shall be considered as advisory to the Government and shall not be construed as expressing or implying a contractual act of the Government without affirmations by Contracting Officer or his duly authorized representative.
- D. Before placement and installation of work subject to tests by testing laboratory retained by Department of Veterans Affairs, the Contractor shall notify the COR in sufficient time to enable testing laboratory personnel to be present at the site in time for proper taking and testing of specimens and field inspection. Such prior notice shall be not less than three workdays unless otherwise designated by the COR.
- E. All employees of general contractor and subcontractors shall comply with VA security management program and obtain permission of the VA police, be identified by project and employer, and restricted from unauthorized access.

1.3 STATEMENT OF BID ITEM(S)

- A. ITEM I, GENERAL CONSTRUCTION: Work includes general construction, alterations, correct failing sanitary sewer, water main and fire protection deficiencies, and certain other items..
- B. DED. ALT. #1 SEEDING, MULCH, & FERTILIZER IN LIEU OF SODDING.
- C. DED. ALT. #2 WATER METERS AND AUTO. METER READING SYS.

1.4 SPECIFICATIONS AND DRAWINGS FOR CONTRACTOR

A. Drawings and contract documents may be obtained from the website where the solicitation is posted. Additional copies will be at Contractor's expense.

1.5 CONSTRUCTION SECURITY REQUIREMENTS

- A. Security Plan:
 - The security plan defines both physical and administrative security procedures that will remain effective for the entire duration of the project.
 - The General Contractor is responsible for assuring that all subcontractors working on the project and their employees also comply with these regulations.
- B. Security Procedures:
 - General Contractor's employees shall not enter the project site without appropriate badge. They may also be subject to inspection of their personal effects when entering or leaving the project site.
 - 2. Before starting work the General Contractor shall give one week's notice to the Contracting Officer so that security escort arrangements can be provided for the employees. This notice is separate from any notices required for utility shutdown described later in this section.
 - No photography of VA premises is allowed without written permission of the Contracting Officer. Patients and staff are not to be photographed at any time.
 - 4. VA reserves the right to close down or shut down the project site and order General Contractor's employees off the premises in the event of a national emergency. The General Contractor may return to the site only with the written approval of the Contracting Officer.
 - 5. The General Contractor shall provide duplicate keys and lock combinations to the Contracting officers representative (COR) for the purpose of security inspections of every area of project including toolboxes and parked machines and take any emergency action.
 - 6. The General Contractor shall install all permanent cores at completion of the work turn over all permanent lock cylinders to the VA locksmith for permanent installation.
- C. Document Control:
 - Before starting any work, the General Contractor/Sub Contractors shall submit an electronic security memorandum describing the approach to following goals and maintaining confidentiality of "sensitive information".

- The General Contractor is responsible for safekeeping of all drawings, project manual and other project information. This information shall be shared only with those with a specific need to accomplish the project.
- 3. Certain documents, sketches, videos or photographs and drawings may be marked "Law Enforcement Sensitive" or "Sensitive Unclassified". Secure such information in separate containers and limit the access to only those who will need it for the project. Return the information to the Contracting Officer upon request.
- 4. These security documents shall not be removed or transmitted from the project site without the written approval of Contracting Officer.
- 5. All paper waste or electronic media such as CD's and diskettes shall be shredded and destroyed in a manner acceptable to the VA.
- 6. Notify Contracting Officer and Site Security Officer immediately when there is a loss or compromise of "sensitive information".
- All electronic information shall be stored in specified location following VA standards and procedures using an Engineering Document Management Software (EDMS).
 - a. Security, access, and maintenance of all project drawings, both scanned and electronic shall be performed and tracked through the EDMS system.
 - b. "Sensitive information" including drawings and other documents may be attached to e-mail provided all VA encryption procedures are followed.
- D. Motor Vehicle Restrictions
 - Vehicle authorization request shall be required for any vehicle entering the site and such request shall be submitted 24 hours before the date and time of access. Access shall be restricted to picking up and dropping off materials and supplies.
 - Unlimited permits shall be issued for General Contractor and its employees for parking in designated areas only. Contractor to coordinate with VA Medical Center Facility Manager.

1.6 OPERATIONS AND STORAGE AREAS

A. The Contractor shall confine all operations (including storage of materials) on Government premises to areas authorized or approved by the Contracting Officer. The Contractor shall hold and save the Government, its officers, and agents, free and harmless from liability of any nature occasioned by the Contractor's performance.

- B. Temporary buildings (e.g., storage sheds, shops, offices) and utilities may be erected by the Contractor only with the approval of the Contracting Officer and shall be built with labor and materials furnished by the Contractor without expense to the Government. The temporary buildings and utilities shall remain the property of the Contractor and shall be removed by the Contractor at its expense upon completion of the work. With the written consent of the Contracting Officer, the buildings and utilities may be abandoned and need not be removed.
- C. The Contractor shall, under regulations prescribed by the Contracting Officer, use only established roadways, or use temporary roadways constructed by the Contractor when and as authorized by the Contracting Officer. When materials are transported in prosecuting the work, vehicles shall not be loaded beyond the loading capacity recommended by the manufacturer of the vehicle or prescribed by any Federal, State, or local law or regulation. When it is necessary to cross curbs or sidewalks, the Contractor shall protect them from damage. The Contractor shall repair or pay for the repair of any damaged curbs, sidewalks, or roads.
- D. Working space and space available for storing materials shall be as shown on the drawings.
- E. Workers are subject to rules of Medical Center applicable to their conduct.
- F. Execute work in such a manner as to interfere as little as possible with work being done by others. Keep roads clear of construction materials, debris, standing construction equipment and vehicles at all times.
- G. Execute work so as to interfere as little as possible with the normal functioning of Medical Center as a whole, including operations of utility services, fire protection systems and any existing equipment, and with work being done by others. Use of equipment and tools that transmit vibrations and noises through the building structure, are not permitted in buildings that are occupied, during construction, jointly by patients or medical personnel, and Contractor's personnel, except as permitted by COR where required by limited working space.
- H. Do not store materials and equipment in other than assigned areas.
- Schedule delivery of materials and equipment to immediate construction working areas within buildings in use by Department of Veterans Affairs in

quantities sufficient for not more than two workdays. Provide unobstructed access to Medical Center areas required to remain in operation.

- J. Where access by Medical Center personnel to vacated portions of buildings is not required, storage of Contractor's materials and equipment will be permitted subject to fire and safety requirements.
- K. Utilities Services: Where necessary to cut existing pipes, electrical wires, conduits, cables, etc., of utility services, or of fire protection systems or communications systems (except telephone), they shall be cut and capped at suitable places where shown; or, in absence of such indication, where directed by COR. All such actions shall be coordinated with the COR or Utility Company involved:
 - Whenever it is required that a connection fee be paid to a public utility provider for new permanent service to the construction project, for such items as water, sewer, electricity, gas or steam, payment of such fee shall be the responsibility of the Government and not the Contractor.
- L. Phasing:
 - 1. The Medical Center must maintain its operation 24 hours a day 7 days a week. Therefore, any interruption in service must be scheduled and coordinated with the COR to ensure that no lapses in operation occur. It is the CONTRACTOR'S responsibility to develop a work plan and schedule detailing, at a minimum, the procedures to be employed, the equipment and materials to be used, the interim life safety measure to be used during the work, and a schedule defining the duration of the work with milestone subtasks. The work to be outlined shall include, but not be limited to:
 - a. To ensure such executions, Contractor shall furnish the COR with a schedule of approximate phasing, dates, on which the Contractor intends to accomplish work in each specific area of site, building or portion thereof. In addition, Contractor shall notify the COR two weeks in advance of the proposed date of starting work in each specific area of site, building or portion thereof. Arrange such phasing, dates, to ensure accomplishment of this work in successive phases mutually agreeable to Medical Center Director, and Contractor, as follows:

Tuscaloosa VAMCDecember 29, 2023Correct Failing Sanitary Sewer, Water Main, FP Deficiencies100% Construction DocumentsTuscaloosa, AL 35404Project No: 679-21-102

- 1) Contractor shall take all measures and provide all material necessary for protecting existing equipment and property in affected areas of construction against dust and debris, so that equipment and affected areas to be used in the Medical Centers operations will not be hindered. Contractor shall permit access to Department of Veterans Affairs personnel and patients through other construction areas which serve as routes of access to such affected areas and equipment. These routes whether access or egress shall be isolated from the construction area by temporary partitions and have walking surfaces, lighting etc. to facilitate patient and staff access. Coordinate alteration work in areas occupied by Department of Veterans Affairs so that Medical Center operations will continue during the construction period.
- Immediate areas of alterations not mentioned in preceding Subparagraph
 will be temporarily vacated while alterations are performed.
- M. Construction Fence: Before construction operations begin, Contractor shall provide a chain link construction fence, 2.1m (seven feet) minimum height, around the construction area indicated on the drawings. Provide gates as required for access with necessary hardware, including hasps and padlocks. Fasten fence fabric to terminal posts with tension bands and to line posts and top and bottom rails with tie wires spaced at maximum 375mm (15 inches). Bottom of fences shall extend to 25mm (one inch) above grade. Remove the fence when directed by COR.
- N. When a building and/or construction site is turned over to Contractor, Contractor shall accept entire responsibility including upkeep and maintenance therefore:
 - The contractor shall maintain a minimum temperature of 4 degrees C (40 degrees F) at all times, except as otherwise specified.
 - 2. Contractor shall maintain in operating condition existing fire protection and alarm equipment. In connection with fire alarm equipment, Contractor shall make arrangements for pre-inspection of site with Fire Department or Company (Department of Veterans Affairs or municipal) whichever will be required to respond to an alarm from Contractor's employee or watchman.
- O. Utilities Services: Maintain existing utility services for Medical Center at all times. Provide temporary facilities, labor, materials, equipment,

connections, and utilities to assure uninterrupted services. Where necessary to cut existing water, steam, gases, sewer or air pipes, or conduits, wires, cables, etc. of utility services or of fire protection systems and communications systems (including telephone), they shall be cut and capped at suitable places where shown; or, in absence of such indication, where directed by COR.

- 1. No utility service such as water, gas, steam, sewers or electricity, or fire protection systems and communications systems may be interrupted without prior approval of Chief of Facilities Management. Electrical work shall be accomplished with all affected circuits or equipment deenergized. When an electrical outage cannot be accomplished, work on any energized circuits or equipment shall not commence without a detailed work plan, the Medical Center Director's prior knowledge and written approval. Refer to specification Sections 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, 27 05 11 REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS and 28 05 00, COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY for additional requirements.
- P. The contractor shall submit a request to interrupt any such services to COR, in writing, 7 days in advance of proposed interruption. Request shall state reason, date, exact time of, and approximate duration of such interruption.
 - Contractor will be advised (in writing) of approval of request, or of which other date and/or time such interruption will cause least inconvenience to operations of Medical Center. Interruption time approved by Medical Center may occur at other than Contractor's normal working hours.
 - Major interruptions of any system must be requested, in writing, at least 15 calendar days prior to the desired time and shall be performed as directed by the COR.
 - In case of a contract construction emergency, service will be interrupted on approval of COR. Such approval will be confirmed in writing as soon as practical.
 - 4. Whenever it is required that a connection fee be paid to a public utility provider for new permanent service to the construction project, for such items as water, sewer, electricity, gas or steam, payment of

such fee shall be the responsibility of the Government and not the Contractor.

- Q. Abandoned Lines: All service lines such as wires, cables, conduits, ducts, pipes and the like, and their hangers or supports, shall be removed back to their source. Those which are indicated to be abandoned but are not required to be entirely removed, shall be sealed, capped or plugged at the main, branch or panel they originate from. The lines shall not be capped in finished areas, but shall be removed and sealed, capped or plugged in ceilings, within furred spaces, in unfinished areas, or within walls or partitions; so that they are completely behind the finished surfaces.
- R. To minimize interference of construction activities with flow of Medical Center traffic, comply with the following:
 - Keep roads, walks and entrances to grounds, to parking and to occupied areas of buildings clear of construction materials, debris and standing construction equipment and vehicles. Wherever excavation for new utility lines cross existing roads, at least one lane must be open to traffic at all times with approval.
- S. Method and scheduling of required cutting, altering and removal of existing roads, walks and entrances must be approved by the COR.
- T. Coordinate the work for this contract with other construction operations as directed by COR. This includes the scheduling of traffic and the use of roadways, as specified in Article, USE OF ROADWAYS.

1.7 DISPOSAL AND RETENTION

- A. Materials and equipment accruing from work removed and from demolition of buildings or structures, or parts thereof, shall be disposed of as follows:
 - Items not reserved shall become property of the Contractor and be removed by Contractor from Medical Center. Reserved items will be tagged or spray painted indicating they are reserved.
 - 2. Items of portable equipment and furnishings located in rooms and spaces in which work is to be done under this contract shall remain the property of the Government. When rooms and spaces are vacated by the Department of Veterans Affairs during the alteration period, such items which are NOT required by drawings and specifications to be either relocated or reused will be removed by the Government in advance of work to avoid interfering with Contractor's operation.

1.8 PROTECTION OF EXISTING VEGETATION, STRUCTURES, EQUIPMENT, UTILITIES, AND IMPROVEMENTS

- A. The Contractor shall preserve and protect all structures, equipment, and vegetation (such as trees, shrubs, and grass) on or adjacent to the work site, which are not to be removed and which do not unreasonably interfere with the work required under this contract. The Contractor shall only remove trees when specifically authorized to do so and shall avoid damaging vegetation that will remain in place. If any limbs or branches of trees are broken during contract performance, or by the careless operation of equipment, or by workers, the Contractor shall trim those limbs or branches with a clean cut and paint the cut with a tree-pruning compound as directed by the Contracting Officer.
- B. The Contractor shall protect from damage all existing improvements and utilities at or near the work site and on adjacent property of a third party, the locations of which are made known to or should be known by the Contractor. The Contractor shall repair any damage to those facilities, including those that are the property of a third party, resulting from failure to comply with the requirements of this contract or failure to exercise reasonable care in performing the work. If the Contractor fails or refuses to repair the damage promptly, the Contracting Officer may have the necessary work performed and charge the cost to the Contractor.
- C. Refer to Section 01 57 19, TEMPORARY ENVIRONMENTAL CONTROLS, for additional requirements on protecting vegetation, soils, and the environment. Refer to Articles, "Alterations", "Restoration", and "Operations and Storage Areas" for additional instructions concerning repair of damage to structures and site improvements.
- D. Refer to the contract documents. A National Pollutant Discharge Elimination System (NPDES) permit is required for this project. The Contractor is considered an "operator" under the permit and has extensive responsibility for compliance with permit requirements. VA will make the permit application available at the (appropriate medical center) office. The apparent low bidder, contractor and affected subcontractors shall furnish all information and certifications that are required to comply with the permit process and permit requirements. Many of the permit requirements will be satisfied by completing construction as shown on drawing C-001 and specified in 01 57 19 Temporary Environment Controls. Some requirements

involve the Contractor's method of operations and operations planning and the Contractor is responsible for employing best management practices. The affected activities often include, but are not limited to the following:

- 1. Designating areas for equipment maintenance and repair.
- 2. Providing waste receptacles at convenient locations and provide regular collection of wastes.
- Locating equipment wash down areas on site and provide appropriate control of wash-waters.
- Providing protected storage areas for chemicals, paints, solvents, fertilizers, and other potentially toxic materials; and
- 5. Providing adequately maintained sanitary facilities.

1.9 RESTORATION

- A. Remove, cut, alter, replace, patch and repair existing work as necessary to install new work. Except as otherwise shown or specified, do not cut, alter, or remove any structural work, and do not disturb any ducts, plumbing, steam, gas, or electric work without approval of the COR. Existing work to be altered or extended and that is found to be defective in any way, shall be reported to the COR before it is disturbed. Materials and workmanship used in restoring work, shall conform in type and quality to that of original existing construction, except as otherwise shown or specified.
- B. Upon completion of contract, deliver work complete and undamaged. Existing work (walls, ceilings, partitions, floors, mechanical and electrical work, lawns, paving, roads, walks, etc.) disturbed or removed as a result of performing required new work, shall be patched, repaired, reinstalled, or replaced with new work, and refinished and left in as good condition as existed before commencing work.
- C. At Contractor's own expense, Contractor shall immediately restore to service and repair any damage caused by Contractor's workers to existing piping and conduits, wires, cables, etc., of utility services or of fire protection systems and communications systems (including telephone) which are not scheduled for discontinuance or abandonment.
- D. Expense of repairs to such utilities and systems not shown on drawings or locations of which are unknown will be covered by adjustment to contract time and price as permitted in the contract documents.

Tuscaloosa VAMCDecember 29, 2023Correct Failing Sanitary Sewer, Water Main, FP Deficiencies100% Construction DocumentsTuscaloosa, AL 35404Project No: 679-21-102

1.10 PHYSICAL DATA - SOIL CONDITIONS

- A. Data and information furnished or referred to below is for the Contractor's information. The Government shall not be responsible for any interpretation of, or conclusion drawn from the data or information by the Contractor.
- B. Government does not guarantee that other materials will not be encountered, nor that proportions, conditions or character of several materials will not vary from those indicated by explorations. Bidders are expected to examine site of work and logs of borings; and, after investigation, decide for themselves character of materials and make their bids accordingly. Upon proper application to Department of Veterans Affairs, bidders will be permitted to make subsurface explorations of their own at site.

1.11 PROFESSIONAL SURVEYING SERVICES

A. A registered professional land surveyor or registered civil engineer whose services are retained and paid for by the Contractor shall perform services specified herein and in other specification sections. The Contractor shall certify that the land surveyor or civil engineer is not one who is a regular employee of the Contractor, and that the land surveyor or civil engineer has no financial interest in this contract.

1.12 LAYOUT OF WORK

- A. The Contractor shall lay out the work from Government established base lines and benchmarks, indicated on the drawings, and shall be responsible for all measurements in connection with the layout. The Contractor shall furnish, at Contractor's own expense, all stakes, templates, platforms, equipment, tools, materials, and labor required to lay out any part of the work. The Contractor shall be responsible for executing the work to the lines and grades that may be established or indicated by the Contracting Officer. The Contractor shall also be responsible for maintaining and preserving all stakes and other marks established by the Contracting Officer until authorized to remove them. If such marks are destroyed by the Contractor or through Contractor's negligence before their removal is authorized, the Contracting Officer may replace them and deduct the expense of the replacement from any amounts due or to become due to the Contractor.
- B. Establish and plainly mark lines and grades that are reasonably necessary to properly assure that location, orientation, and elevations established for sewer and water utilities are in accordance with lines and elevations shown on contract drawings.

Tuscaloosa VAMCDecember 29, 2023Correct Failing Sanitary Sewer, Water Main, FP Deficiencies100% Construction DocumentsTuscaloosa, AL 35404Project No: 679-21-102

- C. Following completion of general mass excavation and before any other permanent work is performed, establish, and plainly mark (through use of appropriate batter boards or other means) sufficient additional survey control points or system of points as may be necessary to assure proper alignment, orientation, and grade of all major features of work. Survey shall include, but not be limited to, location of lines and grades of footings, exterior walls, center lines of columns in both directions, major utilities, and elevations of floor slabs:
 - Such additional survey control points or system of points thus established shall be checked and certified by a registered land surveyor or registered civil engineer. Furnish such certification to the COR before any work (such as footings, floor slabs, columns, walls, utilities, and other major controlling features) is placed.
- D. During progress of work, and particularly as work progresses from floor to floor, Contractor shall have line grades and plumbness of all major form work checked and certified by a registered land surveyor or registered civil engineer as meeting requirements of contract drawings. Furnish such certification to the COR before any major items of concrete work are placed. In addition, Contractor shall furnish to the COR certificates from a registered land surveyor or registered civil engineer that the following work is complete in every respect as required by contract drawings.
- E. Lines and elevations of sewers and of all outside distribution systems.
- F. Whenever changes from contract drawings are made in line or grading requiring certificates, record such changes on a reproducible drawing bearing the registered land surveyor or registered civil engineer seal, and forward these drawings upon completion of work to COR.
- G. Upon completion of the work, the Contractor shall furnish the COR one electronic copy and reproducible drawings at the scale of the contract drawings, showing the finished grade on the grid developed for constructing the work, including burial monuments and fifty foot stationing along new road centerlines. These drawings shall bear the seal of the registered land surveyor or registered civil engineer.
- H. The Contractor shall perform the surveying and layout work of this and other articles and specifications in accordance with the provisions of Article "Professional Surveying Services".

Tuscaloosa VAMC December 29, 2023 Correct Failing Sanitary Sewer, Water Main, FP Deficiencies 100% Construction Documents Tuscaloosa, AL 35404 Project No: 679-21-102

1.13 AS-BUILT DRAWINGS

- A. The contractor shall maintain two full size sets of as-built drawings which will be kept current during construction of the project, to include all contract changes, modifications, and clarifications.
- B. All variations shall be shown in the same general detail as used in the contract drawings. To ensure compliance, as-built drawings shall be made available for the COR review, as often as requested.
- C. Contractor shall deliver two approved completed sets of as-built drawings in the electronic version (scanned PDF) to the COR or Chief of Facilities Management within 15 calendar days after each completed phase and after the acceptance of the project by the COR.
- D. Paragraphs A, B, & C shall also apply to all shop drawings.

1.14 WARRANTY MANAGEMENT

- A. Warranty Management Plan: Develop a warranty management plan which contains information relevant to FAR requirements in the contract documents at least 30 days before the planned pre-warranty conference, submit one set of the warranty management plan. Include within the warranty management plan all required actions and documents to assure that the Government receives all warranties to which it is entitled. The plan must be in narrative form and contain sufficient detail to render it suitable for use by future maintenance and repair personnel, whether tradesman, or of engineering background, not necessarily familiar with this contract. The term "status" as indicated below must include due date and whether item has been submitted or was approved. Warranty information made available during the construction phase must be submitted to the Contracting Officer for approval prior to each monthly invoice for payment. Assemble approved information in a binder and turn over to the Government upon acceptance of the work. The construction warranty period will begin on the date of the project acceptance and continue for the product warranty period. A joint 4 month and 9 month warranty inspection will be conducted, measured from time of acceptance, by the Contactor and the Contracting Officer. Include in the warranty management plan, but not limited to, the following:
 - Roles and responsibilities of all personnel associated with the warranty process, including points of contact and telephone numbers within the company of the Contractor, subcontractors, manufacturers, or suppliers involved.

Tuscaloosa VAMC December 29, 2023 Correct Failing Sanitary Sewer, Water Main, FP Deficiencies 100% Construction Documents Tuscaloosa, AL 35404 Project No: 679-21-102

- 2. Furnish with each warranty the name, address, and telephone number of each of the guarantor's representatives nearest project location.
- 3. Listing and status of delivery of all Certificates of Warranty for extended warranty items, to include roofs, HVAC balancing, pumps, motors, transformers and for all commissioned systems such as fire protection and alarm systems, sprinkler systems and lightning protection systems, etc.
- A list for each warranted equipment item, feature of construction or system indicating:
 - a. Name of item.
 - b. Model and serial numbers.
 - c. Location where installed.
 - d. Name and phone numbers of manufacturers and suppliers.
 - e. Name and phone numbers of manufacturers or suppliers.
 - f. Names, addresses and phone numbers of sources of spare parts.
 - g. Warranties and terms of warranty. Include one-year overall warranty of construction, including the starting date of warranty of construction. Items which have extended warranties must be indicated with separate warranty expiration dates.
 - h. Starting point and duration of warranty period.
 - i. Summary of maintenance procedures required to continue the warranty in force.
 - j. Cross-reference to specific pertinent Operation and Maintenance manuals.
 - k. Organizations, names, and phone numbers of persons to call for warranty service.
 - Typical response time and repair time expected for various warranted equipment.
- 5. The plans for attendance at the 4 and 9-month post construction warranty inspections conducted by the government.
- Procedure and status of tagging of all equipment covered by extended warranties.
- 7. Copies of instructions to be posted near selected pieces of equipment where operation is critical for warranty and/or safety reasons.
- B. Performance & Payment Bonds: The Performance & Payment Bonds must remain effective throughout the construction period. In the event the Contractor

fails to commence and diligently pursue any construction warranty work required, the Contracting Officer will have the work performed by others, and after completion of the work, will charge the remaining construction warranty funds of expenses incurred by the Government while performing the work, including, but not limited to administrative expenses.

- In the event sufficient funds are not available to cover the construction warranty work performed by the Government at the contractor's expenses, the Contracting Officer will have the right to recoup expenses from the bonding company.
- Following oral or written notification of required construction warranty repair work, the Contractor shall respond in a timely manner. Written verification will follow oral instructions. Failure to respond will be cause for the Contracting Officer to proceed against the Contractor.
- 3. Pre-Warranty Conference: Prior to contract completion, and at a time designated by the Contracting Officer, the Contractor shall meet with the Contracting Officer to develop a mutual understanding with respect to the requirements of this section. Communication procedures for Contractor notification of construction warranty defects, priorities with respect to the type of defect, reasonable time required for Contractor response, and other details deemed necessary by the Contracting Officer for the execution of the construction warranty will be established/ reviewed at this meeting. In connection with these requirements and at the time of the Contractor's quality control completion inspection, furnish the name, telephone number and address of a licensed and bonded company which is authorized to initiate and pursue construction warranty work action on behalf of the Contractor. This point of contract will be located within the local service area of the warranted construction, be continuously available and be responsive to Government inquiry on warranty work action and status. This requirement does not relieve the Contractor of any of its responsibilities in conjunction with other portions of this provision.
- C. Contractor's Response to Construction Warranty Service Requirements:
 - Following oral or written notification by the Contracting Officer, the Contractor shall respond to construction warranty service requirements in accordance with the "Construction Warranty Service Priority List"

and the three categories of priorities listed below. Submit a report on any warranty item that has been repaired during the warranty period. Include within the report the cause of the problem, date reported, corrective action taken, and when the repair was completed. If the Contractor does not perform the construction warranty within the timeframe specified, the Government will perform the work and back charge the construction warranty payment item established.

- First Priority Code 1. Perform onsite inspection to evaluate situation, and determine course of action within 4 hours, initiate work within 6 hours and work continuously to completion or relief.
- 3. Second Priority Code 2. Perform onsite inspection to evaluate situation, and determine course of action within 8 hours, initiate work within 24 hours and work continuously to completion or relief.
- 4. Third Priority Code 3. All other work to be initiated within 3 workdays and work continuously to completion or relief.
- 5. The "Construction Warranty Service Priority List" is as follows:
 - a) Code 1-Life Safety Systems
 - 1) Fire suppression systems.
 - 2) Fire alarm system(s).
 - b) Code 1-Air Conditioning Systems
 - 1) Air conditioning leak in part of the building, if causing damage.
 - 2) Air conditioning system not cooling properly.
- c) <u>Code 1 Doors</u>
 - Overhead doors not operational, causing a security, fire, or safety problem.

Interior, exterior personnel doors or hardware, not functioning properly, causing security, fire, or safety problem.

- d) <u>Code 3-Doors</u>
 - 1) Overhead doors not operational.
 - Interior/exterior personnel doors or hardware not functioning properly.
- e) Code 1-Electrical
 - 1) Power failure (entire area or any building operational after 1600 hours).
 - 2) Security lights.
 - 3) Smoke detectors.

Tuscaloosa VAMCDecember 29, 2023Correct Failing Sanitary Sewer, Water Main, FP Deficiencies100% Construction DocumentsTuscaloosa, AL 35404Project No: 679-21-102

- f) Code 2-Electrical
 - Power failure (no power to a room or part of building). Receptacle and lights not operational (in a room or part of building).
- g) Code 3-Electrical
 - 1) Exterior lights not operational.
- h) Code 1-Gas
 - 1) Leaks and pipeline breaks.
- i) Code 1-Heat
 - 1) Power failure affecting heat.
- j) <u>Code 1-Plumbing</u>
 - 1) Hot water heater failure.
- Leaking water supply pipes
- k) Code 2-Plumbing
 - 1) Flush valves not operating properly
 - 2) Fixture drain, supply line or any water pipe leaking.
 - 3) Toilet leaking at base.
- 1) Code 3- Plumbing
 - 1) Leaky faucets.
- m) Code 3-Interior
 - 1) Floors damaged.
 - 2) Paint chipping or peeling.
 - 3) Casework damaged.
- n) Code 1-Roof Leaks
 - 1) Damage to property is occurring.
- o) Code 2-Water (Exterior)
 - 1) No water to facility.
- p) Code 2-Water (Hot)
 - 1) No hot water in portion of building listed.
- q) <u>Code 3</u>
 - 1) All work not listed above.
- Warranty Tags: At the time of installation, tag each warranted item with a durable, oil and water-resistant tag approved by the Contracting Officer

or COR. Attach each tag with a copper wire and spray with a silicone waterproof coating. Also submit two record copies of the warranty tags showing the layout and design. The date of acceptance and the QC signature must remain blank until the project is accepted for beneficial occupancy. Show the following information on the tag.

Warranty Tags	
Type of product/material	
Model number	
Serial number	
Contract number	
Warranty period from/to	
Inspector's signature	
Construction Contractor	
Address	
Telephone number	
Warranty Contact	
Address	
Telephone number	
Warranty response time priority code	

1.15 USE OF ROADWAYS

A. For hauling, use only established public roads and roads on Medical Center property and, when authorized by the COR, such temporary roads which are necessary in the performance of contract work. Temporary roads shall be constructed, and restoration performed by the Contractor at Contractor's expense. When necessary to cross curbing, sidewalks, or similar construction, they must be protected by well-constructed bridges.

1.16 TEMPORARY USE OF MECHANICAL AND ELECTRICAL EQUIPMENT

- A. Use of new installed mechanical and electrical equipment to provide heat, ventilation, plumbing, light and power will be permitted subject to written approval and compliance with the following provisions:
 - Permission to use each unit or system must be given by COR in writing. If the equipment is not installed and maintained in accordance with the

written agreement and following provisions, the COR will withdraw permission for use of the equipment.

- 2. Electrical installations used by the equipment shall be completed in accordance with the drawings and specifications to prevent damage to the equipment and the electrical systems, i.e., transformers, relays, circuit breakers, fuses, conductors, motor controllers and their overload elements shall be properly sized, coordinated and adjusted. Installation of temporary electrical equipment or devices shall be in accordance with NFPA 70, National Electrical Code, (2014 Edition), Article 590, Temporary Installations. Voltage supplied to each item of equipment shall be verified to be correct and it shall be determined that motors are not overloaded. The electrical equipment shall be thoroughly cleaned before using it and again immediately before final inspection including vacuum cleaning and wiping clean interior and exterior surfaces.
- Units shall be properly lubricated, balanced, and aligned. Vibrations must be eliminated.
- Automatic temperature control systems for preheat coils shall function properly and all safety controls shall function to prevent coil freeze-up damage.
- 5. The air filtering system utilized shall be that which is designed for the system when complete, and all filter elements shall be replaced at completion of construction and prior to testing and balancing of system.
- 6. Prior to final inspection, the equipment or parts used which show wear and tear beyond normal, shall be replaced with identical replacements, at no additional cost to the Government.
- 7. This paragraph shall not reduce the requirements of the mechanical and electrical specifications sections.
- 8. Any damage to the equipment or excessive wear due to prolonged use will be repaired replaced by the contractor at the contractor's expense.
- 9. Government will accept hoisting ropes of elevator and rope of each speed governor if they are worn under normal operation. However, if these ropes are damaged by the action of foreign matter such as sand, lime, grit, stones, etc., during temporary use, they shall be removed and replaced by new hoisting ropes at the contractor's expense.

- 10. If the brake lining of elevators are excessively worn or damaged during temporary use, they shall be removed and replaced by new brake lining at the contractors expense.
- 11. All parts of the main controller, starter, relay panel, selector, etc., worn or damaged during temporary use shall be removed and replaced with new parts at the contractor's expense, if recommended by elevator inspector after elevator is released by Contractor.
- 12. Place elevator in condition equal, less normal wear, to that existing at time it was placed in service of Contractor as approved by Contracting Officer.

1.17 TEMPORARY TOILETS

A. Provide where directed, (for use of all Contractor's workers) ample temporary sanitary toilet accommodations with suitable sewer and water connections; or, when approved by COR, provide suitable dry closets where directed. Keep such places clean and free from flies and all connections and appliances connected therewith are to be removed prior to completion of contract, and premises left perfectly clean.

1.18 AVAILABILITY AND USE OF UTILITY SERVICES

- A. The Government shall make all reasonably required amounts of utilities available to the Contractor from existing outlets and supplies.
- B. The Contractor, at Contractor's expense and in a workmanlike manner, in compliance with code and as satisfactory to the Contracting Officer, shall install and maintain all necessary temporary connections and distribution lines. Before final acceptance of the work by the Government, the Contractor shall remove all the temporary connections, distribution lines, and associated paraphernalia and repair restore the infrastructure as required.
- C. Heat: Furnish temporary heat necessary to prevent injury to work and materials through dampness and cold. Use of open salamanders or any temporary heating devices which may be fire hazards or may smoke and damage finished work, will not be permitted. Maintain minimum temperatures at 10 degrees Fahrenheit above freezing.:
 - Obtain heat by connecting to Medical Center heating distribution system.
- D. Electricity (for Construction and Testing): Furnish all temporary electric services.

- E. Water (for Construction and Testing): Furnish temporary water service.
- F. Obtain water by connecting to the Medical Center water distribution system. Provide reduced pressure backflow preventer at each connection as per code. Water is available at no cost to the Contractor.
- G. Maintain connections, pipe, fittings and fixtures and conserve water-use so none is wasted. Failure to stop leakage or other wastes will be cause for revocation (at COR discretion) of use of water from Medical Center's system.
- H. Fuel: Natural and LP gas and burner fuel oil required for boiler cleaning, normal initial boiler-burner setup and adjusting, and for performing the specified boiler tests will be furnished by the Government. Fuel required for prolonged boiler-burner setup, adjustments, or modifications due to improper design or operation of boiler, burner, or control devices shall be furnished and paid by the Contractor at Contractor's expense.

1.19 TESTS

- A. Pre-test mechanical and electrical equipment and systems and make corrections required for proper operation of such systems before requesting final tests. Final test will not be conducted unless pre-tested.
- B. Conduct final tests required in various sections of specifications in presence of an authorized representative of the Contracting Officer. Contractor shall furnish all labor, materials, equipment, instruments, and forms, to conduct and record such tests.
- C. Mechanical and electrical systems shall be balanced, controlled and coordinated. A system is defined as the entire system which must be coordinated to work together during normal operation to produce results for which the system is designed. For example, air conditioning supply air is only one part of entire system which provides comfort conditions for a building. Other related components are return air, exhaust air, steam, chilled water, refrigerant, hot water, controls and electricity, etc. Another example of a system which involves several components of different disciplines is a boiler installation. Efficient and acceptable boiler operation depends upon the coordination and proper operation of fuel, combustion air, controls, steam, feedwater, condensate and other related components.
- D. All related components as defined above shall be functioning when any system component is tested. Tests shall be completed within a reasonably

period of time during which operating and environmental conditions remain reasonably constant and are typical of the design conditions.

E. Individual test result of any component, where required, will only be accepted when submitted with the test results of related components and of the entire system.

1.20 INSTRUCTIONS

- A. Contractor shall furnish Maintenance and Operating manuals (hard copies and electronic) and verbal instructions when required by the various sections of the specifications and as hereinafter specified.
- B. Manuals: Maintenance and operating manuals and one compact disc (four hard copies and one electronic copy each) for each separate piece of equipment shall be delivered to the COR coincidental with the delivery of the equipment to the job site. Manuals shall be complete, detailed guides for the maintenance and operation of equipment. They shall include complete information necessary for starting, adjusting, maintaining in continuous operation for long periods of time and dismantling and reassembling of the complete units and sub-assembly components. Manuals shall include an index covering all component parts clearly cross-referenced to diagrams and illustrations. Illustrations shall include "exploded" views showing and identifying each separate item. Emphasis shall be placed on the use of special tools and instruments. The function of each piece of equipment, component, accessory and control shall be clearly and thoroughly explained. All necessary precautions for the operation of the equipment and the reason for each precaution shall be clearly set forth. Manuals must reference the exact model, style and size of the piece of equipment and system being furnished. Manuals referencing equipment similar to but of a different model, style, and size than that furnished will not be accepted.
- C. Instructions: Contractor shall provide qualified, factory-trained manufacturers' representatives to give detailed training to assigned Department of Veterans Affairs personnel in the operation and complete maintenance for each piece of equipment. All such training will be at the job site. These requirements are more specifically detailed in the various technical sections. Instructions for different items of equipment that are component parts of a complete system, shall be given in an integrated, progressive manner. All instructors for every piece of component equipment in a system shall be available until instructions for all items included in

the system have been completed. This is to assure proper instruction in the operation of inter-related systems. All instruction periods shall be at such times as scheduled by the COR and shall be considered concluded only when the COR is satisfied in regard to complete and thorough coverage. The contractor shall submit a course outline with associated material to the COR for review and approval prior to scheduling training to ensure the subject matter covers the expectations of the VA and the contractual requirements. The Department of Veterans Affairs reserves the right to request the removal of, and substitution for, any instructor who, in the opinion of the COR, does not demonstrate sufficient qualifications in accordance with requirements for instructors above.

1.21 CONSTRUCTION SIGN

- A. Provide a Construction Sign where directed by the COR. All wood members shall be of framing lumber. Cover sign frame with 0.7 mm (24 gage) galvanized sheet steel nailed securely around edges and on all bearings. Provide three 100 by 100 mm (4 inch by 4 inch) posts (or equivalent round posts) set 1200 mm (four feet) into ground. Set bottom of sign level at 900 mm (three feet) above ground and secure to posts with through bolts. Make posts full height of sign. Brace posts with 50 x 100 mm (two by four inch) material as directed.
- B. Paint all surfaces of sign and posts two coats of white gloss paint. Border and letters shall be of black gloss paint, except project title which shall be blue gloss paint.
- C. Maintain sign and remove it when directed by the COR.
- D. Detail Drawing of construction sign showing required legend and other characteristics of sign is attached hereto and made a part of this specification. shown on the drawings.

Tuscaloosa VAMC Correct Failing Sanitary Sewer, Water Main, FP Deficiencies 100% Construction Documents Tuscaloosa, AL 35404

December 29, 2023 Project No: 679-21-102

SECTION 01 32 16.15 PROJECT SCHEDULES (SMALL PROJECTS - DESIGN/BID/BUILD)

PART 1- GENERAL

1.1 DESCRIPTION:

A. The Contractor shall develop a Critical Path Method (CPM) plan and schedule demonstrating fulfillment of the contract requirements (Project Schedule) and shall keep the Project Schedule up to date in accordance with the requirements of this section and shall utilize the plan for scheduling, coordinating and monitoring work under this contract (including all activities of subcontractors, equipment vendors and suppliers). Conventional Critical Path Method (CPM) technique shall be utilized to satisfy both time and cost applications.

1.2 CONTRACTOR'S REPRESENTATIVE:

- A. The Contractor shall designate an authorized representative responsible for the Project Schedule including preparation, review, and progress reporting with and to the Contracting Officer's Representative (COTR).
- B. The Contractor's representative shall have direct project control and complete authority to act on behalf of the Contractor in fulfilling the requirements of this specification section.
- C. The Contractor's representative shall have the option of developing the project schedule within their organization or to engage the services of an outside consultant. If an outside scheduling consultant is utilized, Section 1.3 of this specification will apply.

1.3 CONTRACTOR'S CONSULTANT:

- A. The Contractor shall submit a qualification proposal to the COTR, within 10 days of bid acceptance. The qualification proposal shall include:
 - 1. The name and address of the proposed consultant.
 - 2. Information to show that the proposed consultant has the qualifications to meet the requirements specified in the preceding paragraph.
 - 3. A representative sample of prior construction projects, which the proposed consultant has performed complete project scheduling services. These representative samples shall be of similar size and scope.
- B. The Contracting Officer has the right to approve or disapprove the proposed consultant and will notify the Contractor of the VA decision within seven calendar days from receipt of the qualification proposal. In

case of disapproval, the Contractor shall resubmit another consultant within 10 calendar days for renewed consideration. The Contractor shall have their scheduling consultant approved prior to submitting any schedule for approval.

1.4 COMPUTER PRODUCED SCHEDULES

- A. The contractor shall provide monthly, to the Department of Veterans Affairs (VA), all computer-produced time/cost schedules and reports generated from monthly project updates. This monthly computer service will include: three copies of up to five different reports (inclusive of all pages) available within the user defined reports of the scheduling software approved by the Contracting Officer or COR; a hard copy listing of all project schedule changes, and associated data, made at the update and an electronic file of this data; and the resulting monthly updated schedule in PDM format. These must be submitted with and substantively support the contractor's monthly payment request and the signed look ahead report. The COTR shall identify the five different report formats that the contractor shall provide.
- B. The contractor shall be responsible for the correctness and timeliness of the computer-produced reports. The Contractor shall also be responsible for the accurate and timely submittal of the updated project schedule and all CPM data necessary to produce the computer reports and payment request that is specified.
- C. The VA will report errors in computer-produced reports to the Contractor's representative within ten calendar days from receipt of reports. The Contractor shall reprocess the computer-produced reports and associated diskette(s), when requested by the Contracting Officer's representative, to correct errors which affect the payment and schedule for the project.
- 1.5 THE COMPLETE PROJECT SCHEDULE SUBMITTAL
 - A. Within 45 calendar days after receipt of Notice to Proceed, the Contractor shall submit for the Contracting Officer's review: three blue line copies of the interim schedule on sheets of paper 765 x 1070 mm (30 x 42 inches) and an electronic file in the previously approved CPM schedule program. The submittal shall also include three copies of a computer-produced activity/event ID schedule showing project duration; phase completion dates; and other data, including event cost. Each activity/event on the computer-produced schedule shall contain as a minimum, but not limited to,

activity/event ID, activity/event description, duration, budget amount, early start date, early finish date, late start date, late finish date and total float. Work activity/event relationships shall be restricted to finish-to-start or start-to-start without lead or lag constraints. Activity/event date constraints, not required by the contract, will not be accepted unless submitted to and approved by the Contracting Officer. The contractor shall make a separate written detailed request to the Contracting Officer identifying these date constraints and secure the Contracting Officer's written approval before incorporating them into the network diagram. The Contracting Officer's separate approval of the Project Schedule shall not excuse the contractor of this requirement. Logic events (non-work) will be permitted where necessary to reflect proper logic among work events but must have zero duration. The complete working schedule shall reflect the Contractor's approach to scheduling the complete project. The final Project Schedule in its original form shall contain no contract changes or delays which may have been incurred during the final network diagram development period and shall reflect the entire contract duration as defined in the bid documents. These changes/delays shall be entered at the first update after the final Project Schedule has been approved. The Contractor should provide their requests for time and supporting time extension analysis for contract time as a result of contract changes/delays, after this update, and in accordance with Article, ADJUSTMENT OF CONTRACT COMPLETION.

- B. Within 30 calendar days after receipt of the complete project interim Project Schedule and the complete final Project Schedule, the Contracting Officer or his representative, will do one or both of the following:
 - 1. Notify the Contractor concerning his actions, opinions, and objections.
 - 2. A meeting with the Contractor at or near the job site for joint review, correction or adjustment of the proposed plan will be scheduled if required. Within 14 calendar days after the joint review, the Contractor shall revise and shall submit three blue line copies of the revised Project Schedule, three copies of the revised computer-produced activity/event ID schedule and a revised electronic file as specified by the Contracting Officer. The revised submission will be reviewed by the Contracting Officer and, if found to be as previously agreed upon, will be approved.

Tuscaloosa VAMC December 29, 2023 Correct Failing Sanitary Sewer, Water Main, FP Deficiencies 100% Construction Documents Tuscaloosa, AL 35404 Project No: 679-21-102

- C. The approved baseline schedule and the computer-produced schedule(s) generated there from shall constitute the approved baseline schedule until subsequently revised in accordance with the requirements of this section.
- D. The Complete Project Schedule shall contain work activities/events reflecting the definable features.

1.6 WORK ACTIVITY/EVENT COST DATA

- A. The Contractor shall cost load all work activities/events except procurement activities. The cumulative amount of all cost loaded work activities/events (including alternates) shall equal the total contract price. Prorate overhead, profit and general conditions on all work activities/events for the entire project length. The contractor shall generate from this information cash flow curves indicating graphically the total percentage of work activity/event dollar value scheduled to be in place on early finish, late finish. These cash flow curves will be used by the Contracting Officer to assist him in determining approval or disapproval of the cost loading. Negative work activity/event cost data will not be acceptable, except on VA issued contract changes.
- B. The Contractor shall cost load work activities/events for test and balance and adjust various systems if applicable provisions and clauses are found in the solicitation and contract.
- C. In accordance with contract requirements, the Contractor shall submit, simultaneously with the cost per work activity/event of the construction schedule required by this Section, a responsibility code for all activities/events of the project for which the Contractor's forces will perform the work.
- D. The Contractor shall cost load work activities/events for all BID ITEMS including ASBESTOS ABATEMENT. The sum of each BID ITEM work shall equal the value of the bid item in the Contractors' bid.

1.7 PROJECT SCHEDULE REQUIREMENTS

- A. Show on the project schedule the sequence of work activities/events required for complete performance of all items of work. The Contractor Shall:
 - 1. Show activities/events as:
 - a. Contractor's time required for submittal of shop drawings, templates, fabrication, delivery and similar pre-construction work.

- b. Contracting Officer's and Architect-Engineer's review and approval of shop drawings, equipment schedules, samples, template, or similar items.
- c. Interruption of VA Facilities utilities, delivery of Government furnished equipment, and rough-in drawings, project phasing and any other specification requirements.
- d. Test, balance and adjust various systems and pieces of equipment, maintenance and operation manuals, instructions, and preventive maintenance tasks.
- e. VA inspection and acceptance activity/event with a minimum duration of five workdays at the end of each phase and immediately preceding any VA move activity/event required by the contract phasing for that phase.
- 2. Show not only the activities/events for actual construction work for each trade category of the project, but also trade relationships to indicate the movement of trades from one area, floor, or building, to another area, floor, or building, for at least five trades who are performing major work under this contract.
- 3. Break up the work into activities/events of a duration no longer than 20 workdays each or one reporting period, except as to non-construction activities/events (i.e., procurement of materials, delivery of equipment, concrete and asphalt curing) and any other activities/events for which the COTR may approve the showing of a longer duration. The duration for VA approval of any required submittal, shop drawing, or other submittals will not be less than 20 workdays.
- 4. Describe work activities/events clearly, so the work is readily identifiable for assessment of completion. Activities/events labeled "start," "continue," or "completion," are not specific and will not be allowed. Lead and lag time activities will not be acceptable.
- 5. The schedule shall be generally numbered in such a way to reflect either discipline, phase, or location of the work.
- B. The Contractor shall submit the following supporting data in addition to the project schedule:
 - 1. The appropriate project calendar including working days and holidays.
 - 2. The planned number of shifts per day.
 - 3. The number of hours per shift.

Failure of the Contractor to include this data shall delay the review of the submittal until the Contracting Officer is in receipt of the missing data.

- C. To the extent that the Project Schedule or any revised Project Schedule shows anything not jointly agreed upon, it shall not be deemed to have been approved by the COTR. Failure to include any element of work required for the performance of this contract shall not excuse the Contractor from completing all work required within any applicable completion date of each phase regardless of the COTR's approval of the Project Schedule.
- D. Compact Disk Requirements and CPM Activity/Event Record Specifications: Submit to the VA an electronic file(s) containing one file of the data required to produce a schedule, reflecting all the activities/events of the complete project schedule being submitted.

1.8 PAYMENT TO THE CONTRACTOR:

- A. Monthly, the contractor shall submit an application and certificate for payment using VA Form 10-6001a or the AIA application and certificate for payment documents G702 & G703 reflecting updated schedule activities and cost data in accordance with the provisions of the following Article, PAYMENT AND PROGRESS REPORTING, as the basis upon which progress payments will be made in accordance with contract requirements. The contractor may be entitled to a monthly progress payment upon approval of estimates as determined from the currently approved updated project schedule. Monthly payment requests shall include: a listing of all agreed upon project schedule changes and associated data; and an electronic file (s) of the resulting monthly updated schedule.
- B. Approval of the Contractor's monthly Application for Payment shall be contingent, among other factors, on the submittal of a satisfactory monthly update of the project schedule.

1.9 PAYMENT AND PROGRESS REPORTING

A. Monthly schedule update meetings will be held on dates mutually agreed to by the COTR and the Contractor. Contractor and their CPM consultant (if applicable) shall attend all monthly schedule update meetings. The Contractor shall accurately update the Project Schedule and all other data required and provide this information to the COTR three workdays in advance of the schedule update meeting. Job progress will be reviewed to verify:
- Actual start and/or finish dates for updated/completed activities/events.
- Remaining duration for each activity/event started, or scheduled to start, but not completed.
- Logic, time and cost data for change orders, and supplemental agreements that are to be incorporated into the Project Schedule.
- Changes in activity/event sequence and/or duration which have been made, pursuant to the provisions of following Article, ADJUSTMENT OF CONTRACT COMPLETION.
- 5. Completion percentage for all completed and partially completed activities/events.
- Logic and duration revisions required by this section of the specifications.
- 7. Activity/event duration and percent complete shall be updated independently.
- B. After completion of the joint review, the contractor shall generate an updated computer-produced calendar-dated schedule and supply the Contracting Officer's representative with reports in accordance with the Article, COMPUTER PRODUCED SCHEDULES, specified.
- C. After completing the monthly schedule update, the contractor's representative or scheduling consultant shall rerun all current period contract change(s) against the prior approved monthly project schedule. The analysis shall only include original workday durations and schedule logic agreed upon by the contractor and resident engineer for the contract change(s). When there is a disagreement on logic and/or durations, the Contractor shall use the schedule logic and/or durations provided and approved by the resident engineer. After each rerun update, the resulting electronic project schedule data file shall be appropriately identified and submitted to the VA in accordance to the requirements listed in articles 1.4 and 1.7. This electronic submission is separate from the regular monthly project schedule update requirements and shall be submitted to the resident engineer within fourteen (14) calendar days of completing the regular schedule update..
- D. Following approval of the CPM schedule, the VA, the General Contractor, its approved CPM Consultant, RE office representatives, and all subcontractors needed, as determined by the SRE, shall meet to discuss the

monthly updated schedule. The main emphasis shall be to address work activities to avoid slippage of project schedule and to identify any necessary actions required to maintain project schedule during the reporting period. The Government representatives and the Contractor should conclude the meeting with a clear understanding of those work and administrative actions necessary to maintain project schedule status during the reporting period. This schedule coordination meeting will occur after each monthly project schedule update meeting utilizing the resulting schedule reports from that schedule update. If the project is behind schedule, discussions should include ways to prevent further slippage as well as ways to improve the project schedule status, when appropriate.

1.10 RESPONSIBILITY FOR COMPLETION

- A. If it becomes apparent from the current revised monthly progress schedule that phasing or contract completion dates will not be met, the Contractor shall execute some or all of the following remedial actions:
 - Increase construction manpower in such quantities and crafts as necessary to eliminate the backlog of work.
 - Increase the number of working hours per shift, shifts per working day, working days per week, the amount of construction equipment, or any combination of the foregoing to eliminate the backlog of work.
 - 3. Reschedule the work in conformance with the specification requirements.
- B. Prior to proceeding with any of the above actions, the Contractor shall notify and obtain approval from the COTR for the proposed schedule changes. If such actions are approved, the representative schedule revisions shall be incorporated by the Contractor into the Project Schedule before the next update, at no additional cost to the Government.

1.11 CHANGES TO THE SCHEDULE

- A. Within 30 calendar days after VA acceptance and approval of any updated project schedule, the Contractor shall submit a revised electronic file (s) and a list of any activity/event changes including predecessors and successors for any of the following reasons:
 - Delay in completion of any activity/event or group of activities/events, which may be involved with contract changes, strikes, unusual weather, and other delays will not relieve the Contractor from the requirements specified unless the conditions are

shown on the CPM as the direct cause for delaying the project beyond the acceptable limits.

- 2. Delays in submittals, or deliveries, or work stoppage are encountered which make rescheduling of the work necessary.
- The schedule does not represent the actual prosecution and progress of the project.
- When there is, or has been, a substantial revision to the activity/event costs regardless of the cause for these revisions.
- B. CPM revisions made under this paragraph which affect the previously approved computer-produced schedules for Government furnished equipment, vacating of areas by the VA Facility, contract phase(s) and sub phase(s), utilities furnished by the Government to the Contractor, or any other previously contracted item, shall be furnished in writing to the Contracting Officer for approval.
- C. Contracting Officer's approval for the revised project schedule and all relevant data is contingent upon compliance with all other paragraphs of this section and any other previous agreements by the Contracting Officer or the VA representative.
- D. The cost of revisions to the project schedule resulting from contract changes will be included in the proposal for changes in work as specified in the contract documents and will be based on the complexity of the revision or contract change, man hours expended in analyzing the change, and the total cost of the change.
- E. The cost of revisions to the Project Schedule not resulting from contract changes is the responsibility of the Contractor.

1.12 ADJUSTMENT OF CONTRACT COMPLETION

A. The contract completion time will be adjusted only for the causes specified in this contract. Request for an extension of the contract completion date by the Contractor shall be supported with a justification, CPM data and supporting evidence as the COTR may deem necessary for determination as to whether or not the Contractor is entitled to an extension of time under the provisions of the contract. Submission of proof based on revised activity/event logic, durations (in workdays) and costs is obligatory to any approvals. The schedule must clearly display that the Contractor has used, in full, all the float time available for the work involved in this request. The Contracting Officer's determination as to the total number of days of contract extension will be based upon the current computer-produced calendar-dated schedule for the time period in question and all other relevant information.

- B. Actual delays in activities/events which, according to the computer- produced calendar-dated schedule, do not affect the extended and predicted contract completion dates shown by the critical path in the network, will not be the basis for a change to the contract completion date. The Contracting Officer will within a reasonable time after receipt of such justification and supporting evidence, review the facts and advise the Contractor in writing of the Contracting Officer's decision.
- C. The Contractor shall submit each request for a change in the contract completion date to the Contracting Officer in accordance with the FAR. The Contractor shall include, as a part of each change order proposal, a sketch showing all CPM logic revisions, duration (in work days) changes, and cost changes, for work in question and its relationship to other activities on the approved network diagram.
- D. All delays due to non-work activities/events such as RFI's, WEATHER, STRIKES, and similar non-work activities/events shall be analyzed on a month by month basis.

- - - E N D - - -

SECTION 01 33 23 SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This specification defines the general requirements and procedures for submittals. A submittal is information submitted for VA review to establish compliance with the contract documents.
- B. Detailed submittal requirements are found in the technical sections of the contract specifications. The Contracting Officer may request submittals in addition to those specified when deemed necessary to adequately describe the work covered in the respective technical specifications at no additional cost to the government.
- C. VA approval of a submittal does not relieve the Contractor of the responsibility for any error which may exist. The Contractor is responsible for fully complying with all contract requirements and the satisfactory construction of all work, including the need to check, confirm, and coordinate the work of all subcontractors for the project. Non-compliant material incorporated in the work will be removed and replaced at the Contractor's expense.

1.2 DEFINITIONS

- A. Preconstruction Submittals: Submittals which are required prior to issuing contract notice to proceed or starting construction. For example, Certificates of insurance; Surety bonds; Site-specific safety plan; Construction progress schedule; Schedule of values; Submittal register; List of proposed subcontractors.
- B. Shop Drawings: Drawings, diagrams, and schedules specifically prepared to illustrate some portion of the work. Drawings prepared by or for the Contractor to show how multiple systems and interdisciplinary work will be integrated and coordinated.
- C. Product Data: Catalog cuts, illustrations, schedules, diagrams, performance charts, instructions, and brochures, which describe and illustrate size, physical appearance, and other characteristics of materials, systems, or equipment for some portion of the work. Samples of warranty language when the contract requires extended product warranties.
- D. Samples: Physical examples of materials, equipment, or workmanship that illustrate functional and aesthetic characteristics of a material or

product and establish standards by which the work can be judged. Color samples from the manufacturer's standard line (or custom color samples if specified) to be used in selecting or approving colors for the project. Field samples and mock-ups constructed to establish standards by which the ensuing work can be judged.

- E. Design Data: Calculations, mix designs, analyses, or other data pertaining to a part of work.
- F. Test Reports: Report which includes findings of a test required to be performed by the Contractor on an actual portion of the work. Report which includes finding of a test made at the job site or on sample taken from the job site, on portion of work during or after installation.
- G. Certificates: Document required of Contractor, or of a manufacturer, supplier, installer, or subcontractor through Contractor. The purpose is to document procedures, acceptability of methods, or personnel qualifications for a portion of the work.
- H. Manufacturer's Instructions: Pre-printed material describing installation of a product, system, or material, including special notices and MSDS concerning impedances, hazards, and safety precautions.
- I. Manufacturer's Field Reports: Documentation of the testing and verification actions taken by manufacturer's representative at the job site on a portion of the work, during or after installation, to confirm compliance with manufacturer's standards or instructions. The documentation must indicate whether the material, product, or system has passed or failed the test.
- J. Operation and Maintenance Data: Manufacturer data that is required to operate, maintain, troubleshoot, and repair equipment, including manufacturer's help, parts list, and product line documentation. This data shall be incorporated in an operations and maintenance manual.
- K. Closeout Submittals: Documentation necessary to properly close out a construction contract. For example, Record Drawings and as-built drawings. Also, submittal requirements necessary to properly close out a phase of construction on a multi-phase contract.

1.3 SUBMITTAL REGISTER

E. The submittal register will list items of equipment and materials for which submittals are required by the specifications. This list may not be all inclusive and additional submittals may be required by the specifications. The Contractor is not relieved from supplying submittals required by the contract documents, but which have been omitted from the submittal register.

- F. The submittal register will serve as a scheduling document for submittals and will be used to control submittal actions throughout the contract period.
- G. The VA will provide the initial submittal register in electronic format. Thereafter, the Contractor shall track all submittals by maintaining a complete list, including completion of all data columns, including dates on which submittals are received and returned by the VA.
- H. The Contractor shall update the submittal register as submittal actions occur and maintain the submittal register at the project site until final acceptance of all work by Contracting Officer.
- I. The Contractor shall submit formal monthly updates to the submittal register in electronic format. Each monthly update shall document actual submission and approval dates for each submittal.

1.4 SUBMITTAL SCHEDULING

- A. Submittals are to be scheduled, submitted, reviewed, and approved prior to the acquisition of the material or equipment.
- B. Coordinate scheduling, sequencing, preparing, and processing of submittals with performance of work so that work will not be delayed by submittal processing. Allow time for potential resubmittal.
- C. No delay costs or time extensions will be allowed for time lost in late submittals or resubmittals.
- D. All submittals are required to be approved prior to the start of the specified work activity.

1.5 SUBMITTAL PREPARATION

- A. Each submittal is to be complete and in sufficient detail to allow ready determination of compliance with contract requirements.
- B. Collect required data for each specific material, product, unit of work, or system into a single submittal. Prominently mark choices, options, and portions applicable to the submittal. Partial submittals will not be accepted for expedition of construction effort. Submittal will be returned without review if incomplete.
- C. If available product data is incomplete, provide Contractor-prepared documentation to supplement product data and satisfy submittal requirements.

- D. All irrelevant or unnecessary data shall be removed from the submittal to facilitate accuracy and timely processing. Submittals that contain the excessive amount of irrelevant or unnecessary data will be returned with review.
- E. Provide a transmittal form for each submittal with the following information:
 - 1. Project title, location, and number.
 - 2. Construction contract number.
 - 3. Date of the drawings and revisions.
 - Name, address, and telephone number of subcontractor, supplier, manufacturer, and any other subcontractor associated with the submittal.
 - 5. List paragraph number of the specification section and sheet number of the contract drawings by which the submittal is required.
 - When a resubmission, add alphabetic suffix on submittal description.
 For example, submittal 18 would become 18A, to indicate resubmission.
 - 7. Product identification and location in project.
- F. The Contractor is responsible for reviewing and certifying that all submittals are in compliance with contract requirements before submitting them for VA review. Proposed deviations from the contract requirements are to be clearly identified. All deviations submitted must include a side by side comparison of the item being proposed against item specified. Failure to point out deviations will result in the VA requiring removal and replacement of such work at the Contractor's expense.
- G. Stamp, sign, and date each submittal transmittal form indicating action taken.
- H. Stamp used by the Contractor on the submittal transmittal form to certify that the submittal meets contract requirements is to be similar to the following:

	CONTRACTOR
	(Firm Name)
۱	Approved
_	Approved with corrections as noted on submittal data and/or
	attached sheets(s)
1	
	SIGNATURE:
	TITLE:
	DATE:

1.6 SUBMITTAL FORMAT AND TRANSMISSION

- A. Provide submittals in electronic format, with the exception of material samples. Use PDF as the electronic format, unless otherwise specified or directed by the Contracting Officer.
- B. Compile the electronic submittal file as a single, complete document. Name the electronic submittal file specifically according to its contents.
- C. Electronic files must be of sufficient quality that all information is legible. Generate PDF files from original documents so that the text included in the PDF file is both searchable and can be copied. If documents are scanned, Optical Character Resolution (OCR) routines are required.
- D. E-mail electronic submittal documents smaller than 5MB in size to e-mail addresses as directed by the Contracting Officer.
- E. Provide electronic documents over 5MB through an electronic FTP file sharing system. Confirm that the electronic FTP file sharing system can be accessed from the VA computer network. The Contractor is responsible for setting up, providing, and maintaining the electronic FTP file sharing system for the construction contract period of performance.
- F. Provide hard copies of submittals when requested by the Contracting Officer. Up to 3 additional hard copies of any submittal may be requested at the discretion of the Contracting Officer, at no additional cost to the VA.

1.7 SAMPLES

- A. Submit two sets of physical samples showing range of variation, for each required item.
- B. Where samples are specified for selection of color, finish, pattern, or texture, submit the full set of available choices for the material or product specified.
- C. When color, texture, or pattern is specified by naming a particular manufacturer and style, include one sample of that manufacturer and style, for comparison.
- D. Before submitting samples, the Contractor is to ensure that the materials or equipment will be available in quantities required in the project. No change or substitution will be permitted after a sample has been approved.
- E. The VA reserves the right to disapprove any material or equipment which previously has proven unsatisfactory in service.
- F. Physical samples supplied maybe requested back for use in the project after reviewed and approved.

1.8 OPERATION AND MAINTENANCE DATA

- A. Submit data specified for a given item within 30 calendar days after the item is delivered to the contract site.
- B. In the event the Contractor fails to deliver O&M Data within the time limits specified, the Contracting Officer may withhold from progress payments 50 percent of the price of the item with which such O&M Data are applicable.

1.9 TEST REPORTS

A. SRE may require specific test after work has been installed or completed which could require contractor to repair test area at no additional cost to contract.

1.10 VA REVIEW OF SUBMITTALS AND RFIS

- A. The VA will review all submittals for compliance with the technical requirements of the contract documents. The Architect-Engineer for this project will assist the VA in reviewing all submittals and determining contractual compliance. Review will be only for conformance with the applicable codes, standards, and contract requirements.
- B. Period of review for submittals begins when the VA COR receives submittal from the Contractor.
- C. Period of review for each resubmittal is the same as for initial submittal.
- D. VA review period is 15 working days for submittals.
- E. VA review period is 10 working days for RFIs.
- F. The VA will return submittals to the Contractor with the following notations:
 - "Approved": authorizes the Contractor to proceed with the work covered.
 - "Approved as noted": authorizes the Contractor to proceed with the work covered provided the Contractor incorporates the noted comments and makes the noted corrections.
 - 3. "Disapproved, revise and resubmit": indicates noncompliance with the contract requirements or that submittal is incomplete. Resubmit with appropriate changes and corrections. No work shall proceed for this item until resubmittal is approved.
 - 4. "Not reviewed": indicates submittal does not have evidence of being reviewed and approved by Contractor or is not complete. A submittal marked "not reviewed" will be returned with an explanation of the

reason it is not reviewed. Resubmit submittals after taking appropriate action.

1.11 APPROVED SUBMITTALS

- A. The VA approval of submittals is not to be construed as a complete check, and indicates only that the general method of construction, materials, detailing, and other information are satisfactory.
- B. VA approval of a submittal does not relieve the Contractor of the responsibility for any error which may exist. The Contractor is responsible for fully complying with all contract requirements and the satisfactory construction of all work, including the need to check, confirm, and coordinate the work of all subcontractors for the project. Non-compliant material incorporated in the work will be removed and replaced at the Contractor's expense.
- C. After submittals have been approved, no resubmittal for the purpose of substituting materials or equipment will be considered unless accompanied by an explanation of why a substitution is necessary.
- D. Retain a copy of all approved submittals at project site, including approved samples.

1.12 WITHHOLDING OF PAYMENT

A. Payment for materials incorporated in the work will not be made if required approvals have not been obtained.

- - - E N D - - -

SECTION 01 35 26 SAFETY REQUIREMENTS

TABLE OF CONTENTS

APPLICABLE PUBLICATIONS 3	
DEFINITIONS	
REGULATORY REQUIREMENTS	
ACCIDENT PREVENTION PLAN (APP)	
ACTIVITY HAZARD ANALYSES (AHAS) 11	
PRECONSTRUCTION CONFERENCE 13	
"SITE SAFETY AND HEALTH OFFICER" (SSHO) and "COMPETENT PERSON" (CP) 14	4
TRAINING 14	
<u>INSPECTIONS</u>	
ACCIDENTS, OSHA 300 LOGS, AND MAN-HOURS	
PERSONAL PROTECTIVE EQUIPMENT (PPE) 18	
INFECTION CONTROL	
TUBERCULOSIS SCREENING	
<u>FIRE SAFETY</u>	
ELECTRICAL	
FALL PROTECTION	
SCAFFOLDS AND OTHER WORK PLATFORMS	
EXCAVATION AND TRENCHES	
<u>CRANES</u>	
CONTROL OF HAZARDOUS ENERGY (LOCKOUT/TAGOUT)	
CONFINED SPACE ENTRY	
WELDING AND CUTTING	
<u>LADDERS</u>	
FLOOR & WALL OPENINGS	
	APPLICABLE PUBLICATIONS 3 DEFINITIONS 4 REGULATORY REQUIREMENTS 6 ACCIDENT PREVENTION PLAN (APP) 6 ACTIVITY HAZARD ANALYSES (AHAS) 11 PRECONSTRUCTION CONFERENCE 13 "SITE SAFETY AND HEALTH OFFICER" (SSHO) and "COMPETENT PERSON" (CP) 1 TRAINING 14 INSPECTIONS 16 ACCIDENTS, OSHA 300 LOGS, AND MAN-HOURS 16 PERSONAL PROTECTIVE EQUIPMENT (PPE) 18 INFECTION CONTROL 18 TUBERCULOSIS SCREENING 26 FIRE SAFETY 27 ELECTRICAL 30 FALL PROTECTION 31 SCAFFOLDS AND OTHER WORK PLATFORMS 22 EXCAVATION AND TRENCHES 33 CONTROL OF HAZARDOUS ENERGY (LOCKOUT/TAGOUT) 36 WELDING AND CUTTING 37 LADDERS 37

SECTION 01 35 26 SAFETY REQUIREMENTS

1.1 APPLICABLE PUBLICATIONS:

- A. Latest publications listed below form part of this Article to extent referenced. Publications are referenced in text by basic designations only.
- B. American Society of Safety Engineers (ASSE):

A10.1-2011.....Pre-Project & Pre-Task Safety and Health Planning A10.34-2012....Protection of the Public on or Adjacent to Construction Sites

A10.38-2013.....Basic Elements of an Employer's Program to Provide a Safe and Healthful Work Environment American National Standard Construction and Demolition Operations

C. American Society for Testing and Materials (ASTM):

E84-2013.....Surface Burning Characteristics of Building Materials

D. The Facilities Guidelines Institute (FGI):

FGI Guidelines-2010..Guidelines for Design and Construction of Healthcare Facilities

E. National Fire Protection Association (NFPA):

10-2018.....Standard for Portable Fire Extinguishers

30-2018.....Flammable and Combustible Liquids Code

51B-2019..... Standard for Fire Prevention During Welding, Cutting and Other Hot Work

70-2020.....National Electrical Code

70B-2019.....Recommended Practice for Electrical Equipment Maintenance

70E-2018Standard for Electrical Safety in the Workplace

99-2018.....Health Care Facilities Code

241-2019.....Standard for Safeguarding Construction, Alteration, and Demolition Operations

F. The Joint Commission (TJC)

```
TJC Manual .....Comprehensive Accreditation and Certification Manual
```

G. U.S. Nuclear Regulatory Commission

10 CFR 20Standards for Protection Against Radiation

H. U.S. Occupational Safety and Health Administration (OSHA):

29 CFR 1910Safety and Health Regulations for General Industry 29 CFR 1926Safety and Health Regulations for Construction Industry

I. VHA Directive 2005-007

1.2 DEFINITIONS:

- A. Critical Lift. A lift with the hoisted load exceeding 75% of the crane's maximum capacity; lifts made out of the view of the operator (blind picks); lifts involving two or more cranes; personnel being hoisted; and special hazards such as lifts over occupied facilities, loads lifted close to powerlines, and lifts in high winds or where other adverse environmental conditions exist; and any lift which the crane operator believes is critical.
- B. OSHA "Competent Person" (CP). One who is capable of identifying existing and predictable hazards in the surroundings and working conditions which are unsanitary, hazardous, or dangerous to employees, and who has the authorization to take prompt corrective measures to eliminate them (see 29 CFR 1926.32(f)).
- C. "Qualified Person" means one who, by possession of a recognized degree, certificate, or professional standing, or who by extensive knowledge, training, and experience, has successfully demonstrated his ability to solve or resolve problems relating to the subject matter, the work, or the project.

- D. High Visibility Accident. Any mishap which may generate publicity or high visibility.
- E. Accident/Incident Criticality Categories:
 - 1. No impact near miss incidents that should be investigated but are not required to be reported to the VA.
 - Minor incident/impact incidents that require first aid or result in minor equipment damage (less than \$5000). These incidents must be investigated but are not required to be reported to the VA.
 - 3. Moderate incident/impact Any work-related injury or illness that results in:
 - a. Days away from work (any time lost after day of injury/illness onset.
 - b. Restricted work.
 - c. Transfer to another job.
 - d. Medical treatment beyond first aid.
 - e. Loss of consciousness.
 - A significant injury or illness diagnosed by a physician or other licensed health care professional, even if it did not result in (1) through (5) above or,
 - 5. Any incident that leads to major equipment damage (greater than \$5000).
- F. These incidents must be investigated and are required to be reported to the VA.
 - 1 Major incident/impact Any mishap that leads to fatalities, hospitalizations, amputations, and losses of an eye as a result of contractors' activities. Or any incident which leads to major property damage (greater than \$20,000) and/or may generate publicity or high visibility. These incidents must be investigated and are required to be reported to the VA as soon as practical, but not later than 2 hours after the incident.

G. Medical Treatment. Treatment administered by a physician or by registered professional personnel under the standing orders of a physician. Medical treatment does not include first aid treatment even through provided by a physician or registered personnel.

1.3 REGULATORY REQUIREMENTS:

A. In addition to the detailed requirements included in the provisions of this contract, comply with 29 CFR 1926, comply with 29 CFR 1910 as incorporated by reference within 29 CFR 1926, comply with ASSE A10.34, and all applicable [federal, state, and local] laws, ordinances, criteria, rules, and regulations. Submit matters of interpretation of standards for resolution before starting work. Where the requirements of this specification, applicable laws, criteria, ordinances, regulations, and referenced documents vary, the most stringent requirements govern except with specific approval and acceptance by the Facility Safety or Contracting Officer Representative or Government Designated Authority.

1.4 ACCIDENT PREVENTION PLAN (APP):

- A. The APP (aka Construction Safety & Health Plan) shall interface with the Contractor's overall safety and health program. Include any portions of the Contractor's overall safety and health program referenced in the APP in the applicable APP element and ensure it is site-specific. The Government considers the Prime Contractor to be the "controlling authority" for all worksite safety and health of each subcontractor(s). Contractors are responsible for informing their subcontractors of the safety provisions under the terms of the contract and the penalties for noncompliance, coordinating the work to prevent one craft from interfering with or creating hazardous working conditions for other crafts, and inspecting subcontractor operations to ensure that accident prevention responsibilities are being carried out.
- B. The APP shall be prepared as follows:
 - Written in English by a qualified person who is employed by the Prime Contractor articulating the specific work and hazards pertaining to the contract (model language can be found in ASSE A10.33).
 Specifically articulating the safety requirements found within these VA contract safety specifications.

- 2. Address both the Prime Contractors and the subcontractors work operations.
- 3. State measures to be taken to control hazards associated with materials, services, or equipment provided by suppliers.
- 4. Address all the elements/sub-elements and in order as follows:
- a. **SIGNATURE SHEET**. Title, signature, and phone number of the following:
 - Plan preparer (Qualified Person such as corporate safety staff person or contracted Certified Safety Professional with construction safety experience).
 - Plan approver (company/corporate officers authorized to obligate the company).
 - 3) Plan concurrence (e.g., Chief of Operations, Corporate Chief of Safety, Corporate Industrial Hygienist, project manager or superintendent, project safety professional). Provide concurrence of other applicable corporate and project personnel (Contractor).
- b. BACKGROUND INFORMATION. List the following:
 - 1) Contractor.
 - 2) Contract number.
 - 3) Project name.
 - Brief project description, description of work to be performed, and location; phases of work anticipated (these will require an AHA).
- c. STATEMENT OF SAFETY AND HEALTH POLICY. Provide a copy of current corporate/company Safety and Health Policy Statement, detailing commitment to providing a safe and healthful workplace for all employees. The Contractor's written safety program goals, objectives, and accident experience goals for this contract should be provided.
- d. RESPONSIBILITIES AND LINES OF AUTHORITIES. Provide the following:

- 1) A statement of the employer's ultimate responsibility for the implementation of his SOH program.
- Identification and accountability of personnel responsible for safety at both corporate and project level. Contracts specifically requiring safety or industrial hygiene personnel shall include a copy of their resumes.
- 3) The names of Competent and/or Qualified Person(s) and proof of competency/qualification to meet specific OSHA Competent/Qualified Person(s) requirements must be attached.
- Requirements that no work shall be performed unless a designated competent person is present on the job site.
- 5) Requirements for pre-task Activity Hazard Analysis (AHAs).
- 6) Lines of authority.
- Policies and procedures regarding noncompliance with safety requirements (to include disciplinary actions for violation of safety requirements) should be identified.
- e. SUBCONTRACTORS AND SUPPLIERS. If applicable, provide procedures for coordinating SOH activities with other employers on the job site:
 - 1) Identification of subcontractors and suppliers (if known);
 - 2) Safety responsibilities of subcontractors and suppliers.

f. TRAINING.

- Site-specific SOH orientation training at the time of initial hire or assignment to the project for every employee before working on the project site is required.
- 2) Mandatory training and certifications that are applicable to this project (e.g., explosive actuated tools, crane operator, rigger, crane signal person, fall protection, electrical lockout/NFPA 70E, machine/equipment lockout, confined space, etc.) and any requirements for periodic retraining/recertification are required.

- Procedures for ongoing safety and health training for supervisors and employees shall be established to address changes in site hazards/conditions.
- OSHA 10-hour training is required for all workers on site and the OSHA 30-hour training is required for Trade Competent Persons (CPs)
- g. SAFETY AND HEALTH INSPECTIONS.
 - Specific assignment of responsibilities for a minimum daily job site safety and health inspection during periods of work activity: Who will conduct (e.g., "Site Safety and Health CP"), proof of inspector's training/qualifications, when inspections will be conducted, procedures for documentation, deficiency tracking system, and follow-up procedures.
 - Any external inspections/certifications that may be required (e.g., contracted CSP or CSHT)
- h. ACCIDENT/INCIDENT INVESTIGATION & REPORTING. The Contractor shall conduct mishap investigations of all Moderate and Major as well as all High Visibility Incidents. The APP shall include accident/incident investigation procedure and identify person(s) responsible to provide the following to the Facility Safety or Contracting Officer Representative or Government Designated Authority:
 - 1) Exposure data (man-hours worked).
 - 2) Accident investigation reports.
 - 3) Project site injury and illness logs.
- i. PLANS (PROGRAMS, PROCEDURES) REQUIRED. Based on a risk assessment of contracted activities and on mandatory OSHA compliance programs, the Contractor shall address all applicable occupational, patient, and public safety risks in site-specific compliance and accident prevention plans. These Plans shall include but are not limited to procedures for addressing the risks associates with the following:
 - 1) Emergency response.

- 2) Contingency for severe weather.
- 3) Fire Prevention.
- 4) Medical Support.
- 5) Posting of emergency telephone numbers.
- 6) Prevention of alcohol and drug abuse.
- 7) Site sanitation(housekeeping, drinking water, toilets).
- 8) Night operations and lighting.
- 9) Hazard communication program.
- 10) Welding/Cutting "Hot" work.
- 11) Electrical Safe Work Practices (Electrical LOTO/NFPA 70E).
- 12) General Electrical Safety.
- 13) Hazardous energy control (Machine LOTO).
- 14) Site-Specific Fall Protection & Prevention.
- 15) Excavation/trenching.
- 16) Asbestos abatement.
- 17) Lead abatement.
- 18) Crane Critical lift.
- 19) Respiratory protection.
- 20) Health hazard control program.
- 21) Radiation Safety Program.
- 22) Abrasive blasting.
- 23) Heat/Cold Stress Monitoring.
- 24) Crystalline Silica Monitoring (Assessment).
- 25) Demolition plan (to include engineering survey).
- 26) Formwork and shoring erection and removal.

27) PreCast Concrete.

- 28) Public (Mandatory compliance with ANSI/ASSE A10.34-2012).
- C. Submit the APP to the Facility Safety Manager or Contracting Officer Representative or Government Designated Authority for review for compliance with contract requirements in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES 15 calendar days prior to the date of the preconstruction conference for acceptance. Work cannot proceed without an accepted APP.
- D. Once accepted by the Facility Safety Manager or Contracting Officer Representative or Government Designated Authority, the APP and attachments will be enforced as part of the contract. Disregarding the provisions of this contract or the accepted APP will be cause for stopping of work, at the discretion of the Contracting Officer in accordance with the contract documents until the matter has been rectified.
- E. Once work begins, changes to the accepted APP shall be made with the knowledge and concurrence of the project overall designated OSHA Competent Person, and facility Safety Manager Contracting Officer Representative or the Government Designated Authority. Should any severe hazard exposure, i.e., imminent danger, become evident, stop work in the area, secure the area, and develop a plan to remove the exposure and control the hazard. Notify the Contracting Officer within 24 hours of discovery. Eliminate/remove the hazard. In the interim, take all necessary action to restore and maintain safe working conditions in order to safeguard onsite personnel, visitors, the public and the environment.

1.5 ACTIVITY HAZARD ANALYSES (AHAS):

A. AHAs are also known as Job Hazard Analyses, Job Safety Analyses, and Activity Safety Analyses. Before beginning each work activity involving a type of work presenting hazards not experienced in previous project operations or where a new work crew or sub-contractor is to perform the work, the Contractor(s) performing that work activity shall prepare an AHA (Example electronic AHA forms can be found on the US Army Corps of Engineers web site)

- B. AHAs shall define the activities being performed and identify the work sequences, the specific anticipated hazards, site conditions, equipment, materials, and the control measures to be implemented to eliminate or reduce each hazard to an acceptable level of risk.
- C. Work shall not begin until the AHA for the work activity has been accepted by the Facility Safety Manager or Contracting Officer Representative or Government Designated Authority and discussed with all engaged in the activity, including the Contractor, subcontractor(s), and Government onsite representatives at preparatory and initial control phase meetings.
 - The names of the Competent/Qualified Person(s) required for a particular activity (for example, excavations, scaffolding, fall protection, other activities as specified by OSHA and/or other State and Local agencies) shall be identified and included in the AHA. Certification of their competency/qualification shall be submitted to the Government Designated Authority (GDA) for acceptance prior to the start of that work activity.
 - The AHA shall be reviewed and modified as necessary to address changing site conditions, operations, or change of competent/qualified person(s).
 - a. If more than one Competent/Qualified Person is used on the AHA activity, a list of names shall be submitted as an attachment to the AHA. Those listed must be Competent/Qualified for the type of work involved in the AHA and familiar with current site safety issues.
 - b. If a new Competent/Qualified Person (not on the original list) is added, the list shall be updated (an administrative action not requiring an updated AHA). The new person shall acknowledge in writing that he or she has reviewed the AHA and is familiar with current site safety issues.
 - 3. Submit AHAs to the Facility Safety Manager or Contracting Officer Representative or Government Designated Authority for review for compliance with contract requirements in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES for review at least 15 calendar days prior to the start of each phase. Subsequent AHAs as

shall be formatted as amendments to the APP. The analysis should be used during daily inspections to ensure the implementation and effectiveness of the activity's safety and health controls.

- 4. The AHA list will be reviewed periodically (at least monthly) at the Contractor supervisory safety meeting and updated as necessary when procedures, scheduling, or hazards change.
- 5. Develop the activity hazard analyses using the project schedule as the basis for the activities performed. All activities listed on the project schedule will require an AHA. The AHAs will be developed by the contractor, supplier, or subcontractor and provided to the prime contractor for review and approval and then submitted to the Facility Safety Manager or Contracting Officer Representative or Government Designated Authority.

1.6 PRECONSTRUCTION CONFERENCE:

- A. Contractor representatives who have a responsibility or significant role in implementation of the accident prevention program, as required by 29 CFR 1926.20(b)(1), on the project shall attend the preconstruction conference to gain a mutual understanding of its implementation. This includes the project superintendent, subcontractor superintendents, and any other assigned safety and health professionals.
- B. Discuss the details of the submitted APP to include incorporated plans, programs, procedures, and a listing of anticipated AHAs that will be developed and implemented during the performance of the contract. This list of proposed AHAs will be reviewed at the conference and an agreement will be reached between the Contractor and the Contracting Officer's representative as to which phases will require an analysis. In addition, establish a schedule for the preparation, submittal, review, and acceptance of AHAs to preclude project delays.
- C. Deficiencies in the submitted APP will be brought to the attention of the Contractor within 14 days of submittal, and the Contractor shall revise the plan to correct deficiencies and re-submit it for acceptance. Do not begin work until there is an accepted APP.

1.7 "SITE SAFETY AND HEALTH OFFICER" (SSHO) AND "COMPETENT PERSON" (CP):

- A. The Prime Contractor shall designate a minimum of one SSHO at each project site that will be identified as the SSHO to administer the Contractor's safety program and government-accepted Accident Prevention Plan. Each subcontractor shall designate a minimum of one CP in compliance with 29 CFR 1926.20 (b)(2) that will be identified as a CP to administer their individual safety programs.
- B. Further, all specialized Competent Persons for the work crews will be supplied by the respective contractor as required by 29 CFR 1926 (i.e., Asbestos, Electrical, Cranes, & Derricks, Demolition, Fall Protection, Fire Safety/Life Safety, Ladder, Rigging, Scaffolds, and Trenches/Excavations).
- C. These Competent Persons can have collateral duties as the subcontractor's superintendent and/or work crew lead persons as well as fill more than one specialized CP role (i.e., Asbestos, Electrical, Cranes, & Derricks, Demolition, Fall Protection, Fire Safety/Life Safety, Ladder, Rigging, Scaffolds, and Trenches/Excavations). However, the SSHO has be a separate qualified individual from the Prime Contractor's Superintendent and/or Quality Control Manager with duties only as the SSHO
- D. The SSHO or an equally qualified Designated Representative/alternate will maintain a presence on the site during construction operations. CPs will maintain presence during their construction activities in accordance with above mentioned clause. A listing of the designated SSHO and all known CPs shall be submitted prior to the start of work as part of the APP with the training documentation and/or AHA as listed in Section 1.8 below.
- E. The repeated presence of uncontrolled hazards during a contractor's work operations will result in the designated CP as being deemed incompetent and result in the required removal of the employee in accordance with the contract documents.

1.8 TRAINING:

A. The designated Prime Contractor SSHO must meet the requirements of all applicable OSHA standards and be capable (through training, experience, and qualifications) of ensuring that the requirements of 29 CFR 1926.16 and other appropriate Federal, State, and local requirements are met for the project. As a minimum the SSHO must have completed the OSHA 30-hour Construction Safety class and have five (5) years of construction industry safety experience or three (3) years if he/she possesses a Certified Safety Professional (CSP) or certified Construction Safety and Health Technician (CSHT) certification or have a safety and health degree from an accredited university or college.

- B. All designated CPs shall have completed the OSHA 30-hour Construction Safety course within the past 5 years.
- C. In addition to the OSHA 30 Hour Construction Safety Course, all CPs with high hazard work operations such as operations involving asbestos, electrical, cranes, demolition, work at heights/fall protection, fire safety/life safety, ladder, rigging, scaffolds, and trenches/excavations shall have a specialized formal course in the hazard recognition & control associated with those high hazard work operations. Documented "repeat" deficiencies in the execution of safety requirements will require retaking the requisite formal course.
- D. All other construction workers shall have the OSHA 10-hour Construction Safety Outreach course and any necessary safety training to be able to identify hazards within their work environment.
- E. Submit training records associated with the above training requirements to the Facility Safety Manager or Contracting Officer Representative or Government Designated Authority for review for compliance with contract requirements in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES 15 calendar days prior to the date of the preconstruction conference for acceptance.
- F. Prior to any worker for the contractor or subcontractors beginning work, they shall undergo a safety briefing provided by the SSHO or his/her designated representative. As a minimum, this briefing shall include information on the site-specific hazards, construction limits, VAMC safety guidelines, means of egress, break areas, work hours, locations of restrooms, use of VAMC equipment, emergency procedures, accident reporting etc... Documentation shall be provided to the Resident Engineer that individuals have undergone contractor's safety briefing.

G. Ongoing safety training will be accomplished in the form of weekly documented safety meeting.

1.9 INSPECTIONS:

- A. The SSHO shall conduct frequent and regular safety inspections (daily) of the site and each of the subcontractors CPs shall conduct frequent and regular safety inspections (daily) of their work operations as required by 29 CFR 1926.20(b)(2). Each week, the SSHO shall conduct a formal documented inspection of the entire construction areas with the subcontractors' "Trade Safety and Health CPs" present in their work areas. Coordinate with, and report findings and corrective actions weekly to Facility Safety Manager or Contracting Officer Representative or Government Designated Authority.
- B. A Certified Safety Professional (CSP) with specialized knowledge in construction safety or a certified Construction Safety and Health Technician (CSHT) shall randomly conduct a monthly site safety inspection. The CSP or CSHT can be a corporate safety professional or independently contracted. The CSP or CSHT will provide their certificate number on the required report for verification as necessary.
 - Results of the inspection will be documented with tracking of the identified hazards to abatement.
 - The Facility Safety Manager or Contracting Officer Representative or Government Designated Authority will be notified immediately prior to the start of the inspection and invited to accompany the inspection.
 - 3. Identified hazard and controls will be discussed to come to a mutual understanding to ensure abatement and prevent future reoccurrence.
 - 4. A report of the inspection findings with status of abatement will be provided to the Facility Safety Manager or Contracting Officer Representative or Government Designated Authority within one week of the onsite inspection.

1.10 ACCIDENTS, OSHA 300 LOGS, AND MAN-HOURS:

A. The prime contractor shall establish and maintain an accident reporting, recordkeeping, and analysis system to track and analyze all injuries and illnesses, high visibility incidents, and accidental property damage (both government and contractor) that occur on site. Notify the Facility Safety Manager or Contracting Officer Representative or Government Designated Authority as soon as practical, but no more than four hours after any accident meeting the definition of a Moderate or Major incidents, High Visibility Incidents, , or any weight handling and hoisting equipment accident. Within notification include contractor name; contract title; type of contract; name of activity, installation, or location where accident occurred; date and time of accident; names of personnel injured; extent of property damage, if any; extent of injury, if known, and brief description of accident (to include type of construction equipment used, PPE used, etc.). Preserve the conditions and evidence on the accident site until the Facility Safety Manager or Contracting Officer Representative or Government Designated Authority determine whether a government investigation will be conducted.

- B. Conduct an accident investigation for all Minor, Moderate and Major incidents as defined in paragraph DEFINITIONS, and property damage accidents resulting in at least \$20,000 in damages, to establish the root cause(s) of the accident. Complete VA Form 2162 (or equivalent) and provide the report to the Facility Safety Manager or Contracting Officer Representative or Government Designated Authority within 5 calendar days of the accident. The Facility Safety Manager or Contracting Officer Representative or Government Designated Authority will provide copies of any required or special forms.
- C. A summation of all man-hours worked by the contractor and associated subcontractors for each month will be reported to the Facility Safety Manager or Contracting Officer Representative or Government Designated Authority monthly.
- D. A summation of all Minor, Moderate, and Major incidents experienced on site by the contractor and associated sub-contractors for each month will be provided to the Facility Safety Manager or Contracting Officer Representative or Government Designated Authority monthly. The contractor and associated subcontractors' OSHA 300 logs will be made available to the Facility Safety Manager or Contracting Officer Representative or Government Designated Authority as requested.

1.11 PERSONAL PROTECTIVE EQUIPMENT (PPE):

- A. PPE is governed in all areas by the nature of the work the employee is performing. For example, specific PPE required for performing work on electrical equipment is identified in NFPA 70E, Standard for Electrical Safety in the Workplace.
- B. Mandatory PPE includes:
 - Hard Hats unless written authorization is given by the Facility Safety Manager or Contracting Officer Representative or Government Designated Authority in circumstances of work operations that have limited potential for falling object hazards such as during finishing work or minor remodeling. With authorization to relax the requirement of hard hats, if a worker becomes exposed to an overhead falling object hazard, then hard hats would be required in accordance with the OSHA regulations.
 - 2. Safety glasses unless written authorization is given by the Facility Safety Manager or Contracting Officer Representative or Government Designated Authority in circumstances of no eye hazards, appropriate safety glasses meeting the ANSI Z.87.1 standard must be worn by each person on site.
 - 3. Appropriate Safety Shoes based on the hazards present, safety shoes meeting the requirements of ASTM F2413-11 shall be worn by each person on site unless written authorization is given by the Facility Safety Manager or Contracting Officer Representative or Government Designated Authority in circumstances of no foot hazards.
 - Hearing protection Use personal hearing protection at all times in designated noise hazardous areas or when performing noise hazardous tasks.

1.12 INFECTION CONTROL

A. Infection Control is critical in all medical center facilities. Interior construction activities causing disturbance of existing dust, or creating new dust, must be conducted within ventilation-controlled areas that minimize the flow of airborne particles into patient areas. Exterior construction activities causing disturbance of soil or creates dust in some other manner must be controlled.

- B. An AHA associated with infection control will be performed by VA personnel in accordance with FGI Guidelines (i.e., Infection Control Risk Assessment (ICRA). The ICRA procedure found on the American Society for Healthcare Engineering (ASHE) website will be utilized. Risk classifications of Class II or lower will require approval by the Facility Safety Manager or Contracting Officer Representative or Government Designated Authority before beginning any construction work. Risk classifications of Class III or higher will require a permit before beginning any construction work. Infection Control permits will be issued by the Project Engineer. The Infection Control Permits will be posted outside the appropriate construction area. More than one permit may be issued for a construction project if the work is located in separate areas requiring separate classes. The primary project scope area for this project is: Class _1_, however, work outside the primary project scope area may vary. The required infection control precautions with each class are as follows:
 - 1. Class I requirements:
 - a. During Construction Work:
 - Notify the Facility Safety Manager or Contracting Officer Representative or Government Designated Authority
 - Execute work by methods to minimize raising dust from construction operations.
 - Ceiling tiles: Immediately replace ceiling tiles displaced for visual inspection.
 - b. Upon Completion:
 - 1) Clean work area upon completion of task
 - Notify the Facility Safety Manager or Contracting Officer Representative or Government Designated Authority
 - 2. Class II requirements:
 - a. During Construction Work:

- Notify the Facility Safety Manager or Contracting Officer Representative or Government Designated Authority
- Provide active means to prevent airborne dust from dispersing into atmosphere such as wet methods or tool mounted dust collectors where possible.
- 3) Water mist work surfaces to control dust while cutting.
- 4) Seal unused doors with duct tape.
- 5) Block off and seal air vents.
- Remove or isolate HVAC system in areas where work is being performed.
- b. Upon Completion:
 - 1) Wipe work surfaces with cleaner/disinfectant.
 - 2) Contain construction waste before transport in tightly covered containers.
 - Wet mop and/or vacuum with HEPA filtered vacuum before leaving work area.
 - 4) Upon completion, restore HVAC system where work was performed
 - 5) Notify the Facility Safety Manager or Contracting Officer Representative or Government Designated Authority
- 3. Class III requirements:
 - a. During Construction Work:
 - Obtain permit from the Facility Safety Manager or Contracting Officer Representative or Government Designated Authority
 - 2) Remove or Isolate HVAC system in area where work is being done to prevent contamination of duct system.
 - 3) Complete all critical barriers i.e., sheetrock, plywood, plastic, to seal area from non-work area or implement control cube method (cart with plastic covering and sealed connection to work site with HEPA vacuum for vacuuming prior to exit) before construction

begins. Install construction barriers and ceiling protection carefully, outside of normal work hours.

- 4) Maintain negative air pressure, 0.01 inches of water gauge, within work site utilizing HEPA equipped air filtration units and continuously monitored with a digital display, recording and alarm instrument, which must be calibrated on installation, maintained with periodic calibration, and monitored by the contractor.
- 5) Contain construction waste before transport in tightly covered containers.
- Cover transport receptacles or carts. Tape covering unless solid lid.
- b. Upon Completion:
 - Do not remove barriers from work area until completed project is inspected by the Facility Safety Manager or Contracting Officer Representative or Government Designated Authority and thoroughly cleaned by the VA Environmental Services Department.
 - Remove construction barriers and ceiling protection carefully to minimize spreading of dirt and debris associated with construction, outside of normal work hours.
 - 3) Vacuum work area with HEPA filtered vacuums.
 - 4) Wet mop area with cleaner/disinfectant.
 - 5) Upon completion, restore HVAC system where work was performed.
 - Return permit to the Facility Safety Manager or Contracting Officer Representative or Government Designated Authority
- 4. Class IV requirements:
 - a. During Construction Work:
 - Obtain permit from the Facility Safety Manager or Contracting Officer Representative or Government Designated Authority

- 2) Isolate HVAC system in area where work is being done to prevent contamination of duct system.
- 3) Complete all critical barriers i.e., sheetrock, plywood, plastic, to seal area from non-work area or implement control cube method (cart with plastic covering and sealed connection to work site with HEPA vacuum for vacuuming prior to exit) before construction begins. Install construction barriers and ceiling protection carefully, outside of normal work hours.
- 4) Maintain negative air pressure, 0.01 inches of water gauge, within work site utilizing HEPA equipped air filtration units and continuously monitored with a digital display, recording and alarm instrument, which must be calibrated on installation, maintained with periodic calibration, and monitored by the contractor.5) Seal holes, pipes, conduits, and punctures.
- 6) Construct anteroom and require all personnel to pass through this room so they can be vacuumed using a HEPA vacuum cleaner before leaving work site or they can wear cloth or paper coveralls that are removed each time they leave work site.
- All personnel entering work site are required to wear shoe covers. Shoe covers must be changed each time the worker exits the work area.
- b. Upon Completion:
 - Do not remove barriers from work area until completed project is inspected by the Facility Safety Manager or Contracting Officer Representative or Government Designated Authority with thorough cleaning by the VA Environmental Services Dept.
 - Remove construction barriers and ceiling protection carefully to minimize spreading of dirt and debris associated with construction, outside of normal work hours.
 - Contain construction waste before transport in tightly covered containers.

- Cover transport receptacles or carts. Tape covering unless solid lid.
- 5) Vacuum work area with HEPA filtered vacuums.
- 6) Wet mop area with cleaner/disinfectant.
- 7) Upon completion, restore HVAC system where work was performed.
- Return permit to the Facility Safety Manager or Contracting Officer Representative or Government Designated Authority
- C. Barriers shall be erected as required based upon classification (Class III
 & IV requires barriers) and shall be constructed as follows:
 - Class III and IV closed door with masking tape applied over the frame and door is acceptable for projects that can be contained in a single room.
 - Construction, demolition, or reconstruction not capable of containment within a single room must have the following barriers erected and made presentable on hospital occupied side:
 - a. Class III & IV (where dust control is the only hazard, and an agreement is reached with the Resident Engineer and Medical Center)
 Airtight plastic barrier that extends from the floor to ceiling. Seams must be sealed with duct tape to prevent dust and debris from escaping
 - b. Class III & IV Drywall barrier erected with joints covered or sealed to prevent dust and debris from escaping.
 - c. Class III & IV Seal all penetrations in existing barrier airtight
 - d. Class III & IV Barriers at penetration of ceiling envelopes, chases and ceiling spaces to stop movement air and debris
 - e. Class IV only Anteroom or double entrance openings that allow workers to remove protective clothing or vacuum off existing clothing

- f. Class III & IV At elevators shafts or stairways within the field of construction, overlapping flap minimum of two feet wide of polyethylene enclosures for personnel access.
- D. Products and Materials:
 - 1. Sheet Plastic: Fire retardant polystyrene, 6-mil thickness meeting local fire codes
 - 2. Barrier Doors: Self Closing One-hour fire-rated solid core wood in steel frame, painted
 - 3. Dust proof one-hour fire-rated drywall
 - 4. High Efficiency Particulate Air-Equipped filtration machine rated at 95% capture of 0.3 microns including pollen, mold spores and dust particles. HEPA filters should have ASHRAE 85 or other prefilter to extend the useful life of the HEPA. Provide both primary and secondary filtrations units. Maintenance of equipment and replacement of the HEPA filters and other filters will be in accordance with manufacturer's instructions.
 - 5. Exhaust Hoses: Heavy duty, flexible steel reinforced; Ventilation Blower Hose
 - 6. Adhesive Walk-off Mats: Provide minimum size mats of 24 inches x 36 inches
 - 7. Disinfectant: Hospital-approved disinfectant or equivalent product
 - 8. Portable Ceiling Access Module
- E. Before any construction on site begins, all contractor personnel involved in the construction or renovation activity shall be educated and trained in infection prevention measures established by the medical center.
- F. A dust control program will be established and maintained as part of the contractor's infection preventive measures in accordance with the FGI Guidelines for Design and Construction of Healthcare Facilities. Prior to start of work, prepare a plan detailing project-specific dust protection measures with associated product data, including periodic status reports, and submit to Project Engineer and Facility CSC for review for compliance
with contract requirements in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES.

- G. Medical center Infection Control personnel will monitor for airborne disease (e.g., aspergillosis) during construction. A baseline of conditions will be established by the medical center prior to the start of work and periodically during the construction stage to determine impact of construction activities on indoor air quality with safe thresholds established.
- H. In general, the following preventive measures shall be adopted during construction to keep down dust and prevent mold.
 - Contractor shall verify that construction exhaust to exterior is not reintroduced to the medical center through intake vents or building openings. HEPA filtration is required where the exhaust dust may reenter the medical center.
 - 2. Exhaust hoses shall be exhausted so that dust is not reintroduced to the medical center.
 - 3. Adhesive Walk-off/Carpet Walk-off Mats shall be used at all interior transitions from the construction area to be occupied medical center area. These mats shall be changed as often as required to maintain clean work areas directly outside the construction area at all times.
 - 4. Vacuum and wet mop all transition areas from construction to the occupied medical center at the end of each workday. Vacuum shall utilize HEPA filtration. Maintain surrounding area frequently. Remove debris as it is created. Transport these outside the construction area in containers with tightly fitting lids.
 - 5. The contractor shall not haul debris through patient-care areas without prior approval of the Resident Engineer and the Medical Center. When, approved, debris shall be hauled in enclosed dust proof containers or wrapped in plastic and sealed with duct tape. No sharp objects should be allowed to cut through the plastic. Wipe down the exterior of the containers with a damp rag to remove dust. All equipment, tools, material, etc. transported through occupied areas shall be made free from dust and moisture by vacuuming and wipe down.

- 6. There shall be no standing water during construction. This includes water in equipment drip pans and open containers within the construction areas. All accidental spills must be cleaned up and dried within 12 hours. Remove and dispose of porous materials that remain damp for more than 72 hours.
- 7. At completion, remove construction barriers and ceiling protection carefully, outside of normal work hours. Vacuum and clean all surfaces free of dust after the removal.
- I. Final Cleanup:
 - Upon completion of project, or as work progresses, remove all construction debris from above ceiling, vertical shafts and utility chases that have been part of the construction.
 - Perform HEPA vacuum cleaning of all surfaces in the construction area. This includes walls, ceilings, cabinets, furniture (built-in or free standing), partitions, flooring, etc.
 - 3. All new air ducts shall be cleaned prior to final inspection.
- J. Exterior Construction
 - Contractor shall verify that dust will not be introduced into the medical center through intake vents or building openings. HEPA filtration on intake vents is required where dust may be introduced.
 - Dust created from disturbance of soil such as from vehicle movement will be wetted with use of a water truck as necessary
 - 3. All cutting, drilling, grinding, sanding, or disturbance of materials shall be accomplished with tools equipped with either local exhaust ventilation (i.e., vacuum systems) or wet suppression controls.

1.13 TUBERCULOSIS SCREENING

A. Contractor shall provide written certification that all contract employees assigned to the work site have had a pre-placement tuberculin screening within 90 days prior to assignment to the worksite and been found have negative TB screening reactions. Contractors shall be required to show documentation of negative TB screening reactions for any additional workers who are added after the 90-day requirement before they will be allowed to work on the work site. NOTE: This can be the Center for Disease Control (CDC) and Prevention and two-step skin testing or a Food and Drug Administration (FDA)-approved blood test.

- Contract employees manifesting positive screening reactions to the tuberculin shall be examined according to current CDC guidelines prior to working on VHA property.
- 2. Subsequently, if the employee is found without evidence of active (infectious) pulmonary TB, a statement documenting examination by a physician shall be on file with the employer (construction contractor), noting that the employee with a positive tuberculin screening test is without evidence of active (infectious) pulmonary TB.
- 3. If the employee is found with evidence of active (infectious) pulmonary TB, the employee shall require treatment with a subsequent statement to the fact on file with the employer before being allowed to return to work on VHA property.

1.14 FIRE SAFETY

- A. Fire Safety Plan: Establish and maintain a site-specific fire protection program in accordance with 29 CFR 1926. Prior to start of work, prepare a plan detailing project-specific fire safety measures, including periodic status reports, and submit to Facility Safety Manager or Contracting Officer Representative or Government Designated Authority for review for compliance with contract requirements in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES. This plan may be an element of the Accident Prevention Plan.
- B. Site and Building Access: Maintain free and unobstructed access to facility emergency services and for fire, police and other emergency response forces in accordance with NFPA 241.
- C. Separate temporary facilities, such as trailers, storage sheds, and dumpsters, from existing buildings and new construction by distances in accordance with NFPA 241. For small facilities with less than 6 m (20 feet) exposing overall length, separate by 3m (10 feet).
- D. Temporary Construction Partitions:

Tuscaloosa VAMCDecember 29, 2023Correct Failing Sanitary Sewer, Water Main, FP Deficiencies100% Construction DocumentsTuscaloosa, AL 35404Project No: 679-21-102

- 1. Install and maintain temporary construction partitions to provide smoke-tight separations between construction areas and adjoining areas. Construct partitions of gypsum board or treated plywood (flame spread rating of 25 or less in accordance with ASTM E84) on both sides of fire retardant treated wood or metal steel studs. Extend the partitions through suspended ceilings to floor slab deck or roof. Seal joints and penetrations. At door openings, install Class C, ¾ hour fire/smoke rated doors with self-closing devices.
- Install one-hour temporary construction partitions as shown on drawings to maintain integrity of existing exit stair enclosures, exit passageways, fire-rated enclosures of hazardous areas, horizontal exits, smoke barriers, vertical shafts and openings enclosures.
- 3. Close openings in smoke barriers and fire-rated construction to maintain fire ratings. Seal penetrations with listed throughpenetration firestop materials in accordance with Section 07 84 00, FIRESTOPPING.
- E. Temporary Heating and Electrical: Install, use, and maintain installations in accordance with 29 CFR 1926, NFPA 241 and NFPA 70.
- F. Means of Egress: Do not block exiting for occupied buildings, including paths from exits to roads. Minimize disruptions and coordinate with Facility Safety Manager or Contracting Officer Representative or Government Designated Authority G. Egress Routes for Construction Workers: Maintain free and unobstructed egress. Inspect daily. Report findings and corrective actions weekly to Facility Safety Manager or Contracting Officer Representative or Government Designated Authority
- H. Fire Extinguishers: Provide and maintain extinguishers in construction areas and temporary storage areas in accordance with 29 CFR 1926, NFPA 241 and NFPA 10.
- I. Flammable and Combustible Liquids: Store, dispense and use liquids in accordance with 29 CFR 1926, NFPA 241 and NFPA 30.
- J. Sprinklers: Install, test and activate new automatic sprinklers prior to removing existing sprinklers.

01 35 26 - 28

Tuscaloosa VAMCDecember 29, 2023Correct Failing Sanitary Sewer, Water Main, FP Deficiencies100% Construction DocumentsTuscaloosa, AL 35404Project No: 679-21-102

- K. Existing Fire Protection: Do not impair automatic sprinklers, smoke and heat detection, and fire alarm systems, except for portions immediately under construction, and temporarily for connections. Provide fire watch for impairments more than 4 hours in a 24-hour period. Request interruptions in accordance with Article, OPERATIONS AND STORAGE AREAS, and coordinate with Facility Safety Manager or Contracting Officer Representative or Government Designated Authority. All existing or temporary fire protection systems (fire alarms, sprinklers) located in construction areas shall be tested as coordinated with the medical center. Parameters for the testing and results of any tests performed shall be recorded by the medical center and copies provided to the Resident Engineer.
- M. Smoke Detectors: Prevent accidental operation. Remove temporary covers at end of work operations each day. Coordinate with Facility Safety Manager or Contracting Officer Representative or Government Designated Authority
- N. Hot Work: Perform and safeguard hot work operations in accordance with NFPA 241 and NFPA 51B. Coordinate with Facility Safety Office. Obtain permits from facility Safety Manager at least 24 hours in advance. Designate contractor's responsible project-site fire prevention program manager to permit hot work.
- O. Fire Hazard Prevention and Safety Inspections: Inspect entire construction areas weekly. Coordinate with, and report findings and corrective actions weekly to Facility Safety Manager or Contracting Officer Representative or Government Designated Authority .
- P. Smoking: Smoking is prohibited in and adjacent to construction areas inside existing buildings and additions under construction. In separate and detached buildings under construction, smoking is prohibited except in designated smoking rest areas.
- Q. Dispose of waste and debris in accordance with NFPA 241. Remove from buildings daily.

1.15 ELECTRICAL

- A. All electrical work shall comply with NFPA 70 (NEC), NFPA 70B, NFPA 70E, 29 CFR Part 1910 Subpart J - General Environmental Controls, 29 CFR Part 1910 Subpart S - Electrical, and 29 CFR 1926 Subpart K in addition to other references required by contract.
- B. All qualified persons performing electrical work under this contract shall be licensed journeyman or master electricians. All apprentice electricians performing under this contract shall be deemed unqualified persons unless they are working under the immediate supervision of a licensed electrician or master electrician.
- C. All electrical work will be accomplished de-energized and in the Electrically Safe Work Condition (refer to NFPA 70E for Work Involving Electrical Hazards, including Exemptions to Work Permit). Any Contractor, subcontractor or temporary worker who fails to fully comply with this requirement is subject to immediate termination in accordance with the contract documents. Only in rare circumstances where achieving an electrically safe work condition prior to beginning work would increase or cause additional hazards, or is infeasible due to equipment design or operational limitations is energized work permitted. The Facility Safety Manager or Contracting Officer Representative or Government Designated Authority with approval of the Medical Center Director will make the determination if the circumstances meet the exception outlined above. An AHA and permit specific to energized work activities will be developed, reviewed, and accepted by the VA prior to the start of that activity.
 - Development of a Hazardous Electrical Energy Control Procedure is required prior to de-energization. A single Simple Lockout/Tagout Procedure for multiple work operations can only be used for work involving qualified person(s) de-energizing one set of conductors or circuit part source. Task specific Complex Lockout/Tagout Procedures are required at all other times.
 - 2. Verification of the absence of voltage after de-energization and lockout/tagout is considered "energized electrical work" (live work) under NFPA 70E, and shall only be performed by qualified persons wearing appropriate shock protective (voltage rated) gloves and arc

rate personal protective clothing and equipment, using Underwriters Laboratories (UL) tested and appropriately rated contact electrical testing instruments or equipment appropriate for the environment in which they will be used.

- 3. Personal Protective Equipment (PPE) and electrical testing instruments will be readily available for inspection by the Chief of Facilities Management and Facility Safety Manager or Contracting Officer Representative or Government Designated Authority.
- D. Before beginning any electrical work, an Activity Hazard Analysis (AHA) will be conducted to include Shock Hazard and Arc Flash Hazard analyses (NFPA Tables can be used only as a last alterative and it is strongly suggested a full Arc Flash Hazard Analyses be conducted). Work shall not begin until the AHA for the work activity and permit for energized work has been reviewed and accepted by the Facility Safety Manager or Contracting Officer Representative or Government Designated Authority and discussed with all engaged in the activity, including the Contractor, subcontractor(s), and Government on-site representatives at preparatory and initial control phase meetings.
- E. Ground-fault circuit interrupters. GFCI protection shall be provided where an employee is operating or using cord- and plug-connected tools related to construction activity supplied by 125-volt, 15-, 20-, or 30- ampere circuits. Where employees operate or use equipment supplied by greater than 125-volt, 15-, 20-, or 30- ampere circuits, GFCI protection or an assured equipment grounding conductor program shall be implemented in accordance with NFPA 70E - 2015, Chapter 1, Article 110.4(C)(2).

1.16 FALL PROTECTION

- A. The fall protection (FP) threshold height requirement is 6 ft (1.8 m) for ALL WORK, unless specified differently or the OSHA 29 CFR 1926 requirements are more stringent, to include steel erection activities, systems-engineered activities (prefabricated) metal buildings, residential (wood) construction and scaffolding work.
 - 1. The use of a Safety Monitoring System (SMS) as a fall protection method is prohibited.

- 2. The use of Controlled Access Zone (CAZ) as a fall protection method is prohibited.
- 3. A Warning Line System (WLS) may ONLY be used on floors or flat or lowsloped roofs (between 0 - 18.4 degrees or 4:12 slope) and shall be erected around all sides of the work area (See 29 CFR 1926.502(f) for construction of WLS requirements). Working within the WLS does not require FP. No worker shall be allowed in the area between the roof or floor edge and the WLS without FP. FP is required when working outside the WLS.
- 4. Fall protection while using a ladder will be governed by the OSHA requirements.

1.17 SCAFFOLDS AND OTHER WORK PLATFORMS

- A. All scaffolds and other work platforms construction activities shall comply with 29 CFR 1926 Subpart L.
- B. The fall protection (FP) threshold height requirement is 6 ft (1.8 m) as stated in Section 1.16.
- C. The following hierarchy and prohibitions shall be followed in selecting appropriate work platforms.
 - Scaffolds, platforms, or temporary floors shall be provided for all work except that can be performed safely from the ground or similar footing.
 - 2. Ladders less than 20 feet may be used as work platforms only when use of small hand tools or handling of light material is involved.
 - 3. Ladder jacks, lean-to, and prop-scaffolds are prohibited.
 - 4. Emergency descent devices shall not be used as working platforms.
- D. Contractors shall use a scaffold tagging system in which all scaffolds are tagged by the Competent Person. Tags shall be color-coded: green indicates the scaffold has been inspected and is safe to use; red indicates the scaffold is unsafe to use. Tags shall be readily visible, made of materials that will withstand the environment in which they are used, be legible and shall include:

- 1. The Competent Person's name and signature.
- 2. Dates of initial and last inspections.
- E. Mast Climbing work platforms: When access ladders, including masts designed as ladders, exceed 20 ft (6 m) in height, positive fall protection shall be used.

1.18 EXCAVATION AND TRENCHES

- A. All excavation and trenching work shall comply with 29 CFR 1926 Subpart P. Excavations less than 5 feet in depth require evaluation by the contractor's "Competent Person" (CP) for determination of the necessity of an excavation protective system where kneeing, laying in, or stooping within the excavation is required.
- B. All excavations and trenches 24 inches in depth or greater shall require a written trenching and excavation permit (NOTE some States and other local jurisdictions require separate state/jurisdiction-issued excavation permits). The permit shall have two sections, one section will be completed prior to digging or drilling and the other will be completed prior to personnel entering the excavations greater than 5 feet in depth. Each section of the permit shall be provided to the Facility Safety Manager or Contracting Officer Representative or Government Designated Authority prior to proceeding with digging or drilling and prior to proceeding with entering the excavation, the permit shall be closed out and provided to the Facility Safety Manager or Contracting Officer Representative Authority . The permit shall be maintained onsite and the first section of the permit shall include the following:
 - Estimated start time & stop time2. Specific location and nature of the work.
 - Indication of the contractor's "Competent Person" (CP) in excavation safety with qualifications and signature. Formal course in excavation safety is required by the contractor's CP.
 - Indication of whether soil or concrete removal to an offsite location is necessary.

- 4. Indication of whether soil samples are required to determined soil contamination.
- Indication of coordination with local authority (i.e. "One Call") or contractor's effort to determine utility location with search and survey equipment.
- Indication of review of site drawings for proximity of utilities to digging/drilling.
- C. The second section of the permit for excavations greater than five feet in depth shall include the following:
 - 1. Determination of OSHA classification of soil. Soil samples will be from freshly dug soil with samples taken from different soil type layers as necessary and placed at a safe distance from the excavation by the excavating equipment. A pocket penetronmeter will be utilized in determination of the unconfined compression strength of the soil for comparison against OSHA table (Less than 0.5 Tons/FT2 - Type C, 0.5 Tons/FT2 to 1.5 Tons/FT2 - Type B, greater than 1.5 Tons/FT2 - Type A without condition to reduce to Type B).
 - 2. Indication of selected protective system (sloping/benching, shoring, shielding). When soil classification is identified as "Type A" or "Solid Rock", only shoring or shielding or Professional Engineer designed systems can be used for protection. A Sloping/Benching system may only be used when classifying the soil as Type B or Type C. Refer to Appendix B of 29 CFR 1926, Subpart P for further information on protective systems designs.
 - Indication of the spoil pile being stored at least 2 feet from the edge of the excavation and safe access being provided within 25 feet of the workers.
 - 4. Indication of assessment for a potential toxic, explosive, or oxygen deficient atmosphere where oxygen deficiency (atmospheres containing less than 19.5 percent oxygen) or a hazardous atmosphere exists or could reasonably be expected to exist. Internal combustion engine equipment is not allowed in an excavation without providing force air ventilation to lower the concentration to below OSHA PELs, providing

sufficient oxygen levels, and atmospheric testing as necessary to ensure safe levels are maintained.

- D As required by OSHA 29 CFR 1926.651(b)(1), the estimated location of utility installations, such as sewer, telephone, fuel, electric, water lines, or any other underground installations that reasonably may be expected to be encountered during excavation work, shall be determined prior to opening an excavation.
 - The planned dig site will be outlined/marked in white prior to locating the utilities.
 - Used of the American Public Works Association Uniform Color Code is required for the marking of the proposed excavation and located utilities.
 - 811 will be called two business days before digging on all local or State lands and public Right-of Ways.
 - 4. Digging will not commence until all known utilities are marked.
 - 5. Utility markings will be maintained
- E. Excavations will be hand dug or excavated by other similar safe and acceptable means as excavation operations approach within 3 to 5 feet of identified underground utilities. Exploratory bar or other detection equipment will be utilized as necessary to further identify the location of underground utilities.
- F. Excavations greater than 20 feet in depth require a Professional Engineer designed excavation protective system.

1.19 CRANES

- A. All crane work shall comply with 29 CFR 1926 Subpart CC.
- B. Prior to operating a crane, the operator must be licensed, qualified, or certified to operate the crane. Thus, all the provisions contained with Subpart CC are effective and there is no "Phase In" date.
- C. A detailed lift plan for all lifts shall be submitted to the Facility Safety Manager or Contracting Officer Representative or Government Designated Authority 14 days prior to the scheduled lift complete with

route for truck carrying load, crane load analysis, siting of crane and path of swing and all other elements of a critical lift plan where the lift meets the definition of a critical lift. Critical lifts require a more comprehensive lift plan to minimize the potential of crane failure and/or catastrophic loss. The plan must be reviewed and accepted by the General Contractor before being submitted to the VA for review. The lift will not be allowed to proceed without prior acceptance of this document.

- D. Crane operators shall not carry loads
 - 1. over the general public or VAMC personnel
 - 2. over any occupied building unless
 - a. the top two floors are vacated
 - b. or overhead protection with a design live load of 300 psf is provided

1.20 CONTROL OF HAZARDOUS ENERGY (LOCKOUT/TAGOUT)

A. All installation, maintenance, and servicing of equipment or machinery shall comply with 29 CFR 1910.147 except for specifically referenced operations in 29 CFR 1926 such as concrete & masonry equipment [1926.702(j)], heavy machinery & equipment [1926.600(a)(3)(i)], and process safety management of highly hazardous chemicals (1926.64). Control of hazardous electrical energy during the installation, maintenance, or servicing of electrical equipment shall comply with Section 1.15 to include NFPA 70E and other VA specific requirements discussed in the section.

1.21 CONFINED SPACE ENTRY

- A. All confined space entry shall comply with 29 CFR 1926, Subpart AA except for specifically referenced operations in 29 CFR 1926 such as excavations/trenches [1926.651(g)].
- B. A site-specific Confined Space Entry Plan (including permitting process) shall be developed and submitted to the Facility Safety Manager or Contracting Officer Representative or Government Designated Authority.

Tuscaloosa VAMC December 29, 2023 Correct Failing Sanitary Sewer, Water Main, FP Deficiencies 100% Construction Documents Tuscaloosa, AL 35404 Project No: 679-21-102

1.22 WELDING AND CUTTING

As specified in section 1.14, Hot Work: Perform and safeguard hot work operations in accordance with NFPA 241 and NFPA 51B. Coordinate with Facility Safety Manager or Contracting Officer Representative or Government Designated Authority . Obtain permits from Facility Safety Manager or Contracting Officer Representative or Government Designated Authority at least _24___ hours in advance. Designate contractor's responsible project-site fire prevention program manager to permit hot work.

1.23 LADDERS

- A. All Ladder use shall comply with 29 CFR 1926 Subpart X.
- B. All portable ladders shall be of sufficient length and shall be placed so that workers will not stretch or assume a hazardous position.
- C. Manufacturer safety labels shall be in place on ladders
- D. Step Ladders shall not be used in the closed position
- E. Top steps or cap of step ladders shall not be used as a step
- F. Portable ladders, used as temporary access, shall extend at least 3 ft (0.9 m) above the upper landing surface.
 - When a 3 ft (0.9-m) extension is not possible, a grasping device (such as a grab rail) shall be provided to assist workers in mounting and dismounting the ladder.
 - In no case shall the length of the ladder be such that ladder deflection under a load would, by itself, cause the ladder to slip from its support.
- G. Ladders shall be inspected for visible defects on a daily basis and after any occurrence that could affect their safe use. Broken or damaged ladders shall be immediately tagged "DO NOT USE," or with similar wording, and withdrawn from service until restored to a condition meeting their original design.

1.24 FLOOR & WALL OPENINGS

A. All floor and wall openings shall comply with 29 CFR 1926 Subpart M.

- B. Floor and roof holes/openings are any that measure over 2 in (51 mm) in any direction of a walking/working surface which persons may trip or fall into or where objects may fall to the level below. Skylights located in floors or roofs are considered floor or roof hole/openings.
- C. All floor, roof openings or hole into which a person can accidentally walk or fall through shall be guarded either by a railing system with toeboards along all exposed sides or a load-bearing cover. When the cover is not in place, the opening or hole shall be protected by a removable guardrail system or shall be attended when the guarding system has been removed, or other fall protection system.
 - 1. Covers shall be capable of supporting, without failure, at least twice the weight of the worker, equipment and material combined.
 - 2. Covers shall be secured when installed, clearly marked with the word "HOLE", "COVER" or "Danger, Roof Opening-Do Not Remove" or color-coded or equivalent methods (e.g., red or orange "X"). Workers must be made aware of the meaning for color coding and equivalent methods.
 - Roofing material, such as roofing membrane, insulation or felts, covering or partly covering openings or holes, shall be immediately cut out. No hole or opening shall be left unattended unless covered.
 - 4. Non-load-bearing skylights shall be guarded by a load-bearing skylight screen, cover, or railing system along all exposed sides.
 - 5. Workers are prohibited from standing/walking on skylights.

- - - E N D - - -

SECTION 01 42 19 REFERENCE STANDARDS

PART 1 - GENERAL

1.1 DESCRIPTION

This section specifies the availability and source of references and standards specified in the project manual under paragraphs APPLICABLE PUBLICATIONS and/or shown on the drawings.

1.2 AVAILABILITY OF SPECIFICATIONS LISTED IN THE GSA INDEX OF FEDERAL SPECIFICATIONS, STANDARDS AND COMMERCIAL ITEM DESCRIPTIONS FPMR PART 101-29

- Α. The GSA Index of Federal Specifications, Standards and Commercial Item Descriptions, FPMR Part 101-29 and copies of specifications, standards, and commercial item descriptions cited in the solicitation may be obtained for a fee by submitting a request to - GSA Federal Supply Service, Specifications Section, Suite 8100, 470 East L'Enfant Plaza, SW, Washington, DC 20407, Telephone (202) 619-8925, Facsimile (202) 619-8978.
- B. If the General Services Administration, Department of Agriculture, or Department of Veterans Affairs issued this solicitation, a single copy of specifications, standards, and commercial item descriptions cited in this solicitation may be obtained free of charge by submitting a request to the addressee in paragraph (a) of this provision. Additional copies will be issued for a fee.
- 1.3 AVAILABILITY FOR EXAMINATION OF SPECIFICATIONS NOT LISTED IN THE GSA INDEX OF FEDERAL SPECIFICATIONS, STANDARDS AND COMMERCIAL ITEM DESCRIPTIONS

The specifications and standards cited in this solicitation can be examined at the following location:

DEPARMENT OF VETERANS AFFAIRS Office of Construction & Facilities Management Facilities Quality Service (00CFM1A) 425 Eye Street N.W, (sixth floor) Washington, DC 20001 Telephone Numbers: (202) 632-5249 or (202) 632-5178 Between 9:00 AM - 3:00 PM

1.4 AVAILABILITY OF SPECIFICATIONS NOT LISTED IN THE GSA INDEX OF FEDERAL SPECIFICATIONS, STANDARDS AND COMMERCIAL ITEM DESCRIPTIONS

The specifications cited in this solicitation may be obtained from the associations or organizations listed below.

- AA Aluminum Association Inc. http://www.aluminum.org
- AABC Associated Air Balance Council https://www.aabc.com
- AAMA American Architectural Manufacturer's Association http://www.aamanet.org
- AASHTO American Association of State Highway and Transportation Officials http://www.aashto.org
- AATCC American Association of Textile Chemists and Colorists
 http://www.aatcc.org
- ACGIH American Conference of Governmental Industrial Hygienists http://www.acgih.org
- ACI American Concrete Institute http://www.aci-int.net
- ACPA American Concrete Pipe Association http://www.concrete-pipe.org
- ACPPA American Concrete Pressure Pipe Association http://www.acppa.org
- ADC Air Diffusion Council http://flexibleduct.org
- AGA American Gas Association http://www.aga.org
- AGC Associated General Contractors of America http://www.agc.org
- AGMA American Gear Manufacturers Association, Inc. http://www.agma.org

Tuscaloosa VAMC December 29, 2023 Correct Failing Sanitary Sewer, Water Main, FP Deficiencies 100% Construction Documents Tuscaloosa, AL 35404 Project No: 679-21-102

AH American Hort

https://www.americanhort.org

- AHAM Association of Home Appliance Manufacturers http://www.aham.org
- AIA American Institute of Architects

http://www.aia.org

- AISC American Institute of Steel Construction http://www.aisc.org
- AISI American Iron and Steel Institute http://www.steel.org
- AITC American Institute of Timber Construction https://aitc-glulam.org
- AMCA Air Movement and Control Association, Inc. http://www.amca.org
- ANSI American National Standards Institute, Inc. http://www.ansi.org
- APA The Engineered Wood Association http://www.apawood.org
- ARI Air-Conditioning and Refrigeration Institute http://www.ari.org
- ARPM Association for Rubber Product Manufacturers

https://arpm.com

- ASABE American Society of Agricultural and Biological Engineers https://www.asabe.org
- ASCE American Society of Civil Engineers http://www.asce.org
- ASHRAE American Society of Heating, Refrigerating, and Air-Conditioning Engineers http://www.ashrae.org

Tuscaloosa VAMC December 29, 2023 Correct Failing Sanitary Sewer, Water Main, FP Deficiencies 100% Construction Documents Tuscaloosa, AL 35404 Project No: 679-21-102

- ASME American Society of Mechanical Engineers http://www.asme.org
- ASSE American Society of Sanitary Engineering International http://www.asse-plumbing.org
- ASTM American Society for Testing and Materials International http://www.astm.org
- AWI Architectural Woodwork Institute https://www.awinet.org
- AWS American Welding Society https://www.aws.org
- AWWA American Water Works Association https://www.awwa.org
- BHMA Builders Hardware Manufacturers Association https://www.buildershardware.com
- BIA The Brick Industry Association http://www.gobrick.com
- CAGI Compressed Air and Gas Institute https://www.cagi.org
- CGA Compressed Gas Association, Inc. https://www.cganet.com
- CI The Chlorine Institute, Inc. https://www.chlorineinstitute.org
- CISCA Ceilings and Interior Systems Construction Association https://www.cisca.org
- CISPI Cast Iron Soil Pipe Institute https://www.cispi.org
- CLFMI Chain Link Fence Manufacturers Institute https://www.chainlinkinfo.org
- CPA Composite Panel Association

December 29, 2023 Project No: 679-21-102

https://www.compositepanel.org

- CPMB Concrete Plant Manufacturers Bureau https://www.cpmb.org
- CRA California Redwood Association http://www.calredwood.org
- CRSI Concrete Reinforcing Steel Institute https://www.crsi.org
- CTI Cooling Technology Institute https://www.cti.org
- DHA Decorative Hardwoods Association

https://www.decorativehardwoods.org

- DHI Door and Hardware Institute https://www.dhi.org
- EGSA Electrical Generating Systems Association http://www.egsa.org
- Edison Electric Institute EEI https://www.eei.org
- EPA United States Environmental Protection Agency https://www.epa.gov
- ETL ETL Testing Services http://www.intertek.com
- FAA Federal Aviation Administration https://www.faa.gov
- Federal Communications Commission FCC https://www.fcc.gov
- FPS Forest Products Society http://www.forestprod.org
- GANA Glass Association of North America http://www.glasswebsite.com

Tuscaloosa VAMC Correct Failing Sanitary Sewer, Water Main, FP Deficiencies 100% Construction Documents Tuscaloosa, AL 35404

December 29, 2023 Project No: 679-21-102

- FΜ Factory Mutual Global Insurance https://www.fmglobal.com
- GΑ Gypsum Association https://gypsum.org
- General Services Administration GSA https://www.gsa.gov
- ΗI Hydraulic Institute http://www.pumps.org
- ICC International Code Council https://shop.iccsafe.org
- ICEA Insulated Cable Engineers Association https://www.icea.net
- ICAC Institute of Clean Air Companies http://www.icac.com
- IEEE Institute of Electrical and Electronics Engineers https://www.ieee.org\
- IGMA Insulating Glass Manufacturers Alliance

https://www.igmaonline.org

- International Municipal Signal Association IMSA http://www.imsasafety.org
- Metal Building Manufacturers Association MBMA https://www.mbma.com
- MSS Manufacturers Standardization Society of the Valve and Fittings Industry http://msshq.org
- National Association of Architectural Metal Manufacturers NAAMM https://www.naamm.org
- PHCC Plumbing-Heating-Cooling Contractors Association https://www.phccweb.org

Tuscaloosa VAMC December 29, 2023 Correct Failing Sanitary Sewer, Water Main, FP Deficiencies 100% Construction Documents Tuscaloosa, AL 35404 Project No: 679-21-102

- NBS National Bureau of Standards See - NIST
- NBBI The National Board of Boiler and Pressure Vessel Inspectors https://www.nationalboard.org
- NEC National Electric Code See - NFPA National Fire Protection Association
- NEMA National Electrical Manufacturers Association https://www.nema.org
- NFPA National Fire Protection Association https://www.nfpa.org
- NHLA National Hardwood Lumber Association https://www.nhla.com
- NIH National Institute of Health https://www.nih.gov
- NIST National Institute of Standards and Technology https://www.nist.gov
- NELMA Northeastern Lumber Manufacturers Association, Inc. http://www.nelma.org
- NPA National Particleboard Association (See CPA, Composite Panel Association)
- NSF National Sanitation Foundation http://www.nsf.org
- OSHA Occupational Safety and Health Administration Department of Labor https://www.osha.gov
- PCA Portland Cement Association https://www.cement.org
- PCI Precast Prestressed Concrete Institute https://www.pci.org

Tuscaloosa VAMCDecember 29, 2023Correct Failing Sanitary Sewer, Water Main, FP Deficiencies100% Construction DocumentsTuscaloosa, AL 35404Project No: 679-21-102

- PPI Plastics Pipe Institute https://www.plasticpipe.org
- PEI Porcelain Enamel Institute http://www.porcelainenamel.com
- PTI Post-Tensioning Institute http://www.post-tensioning.org
- RFCI Resilient Floor Covering Institute https://www.rfci.com
- RIS Redwood Inspection Service (See Western Wood Products Association)

https://www.wwpa.org

- SCMA Southern Cypress Manufacturers Association http://www.cypressinfo.org
- SDI Steel Door Institute http://www.steeldoor.org
- SJI Steel Joist Institute https://www.steeljoist.org
- SMACNA Sheet Metal & Air-Conditioning Contractors'
 National Association
 https://www.smacna.org
- SSPC The Society for Protective Coatings https://www.sspc.org
- STI Steel Tank Institute https://www.steeltank.com
- SWI Steel Window Institute https://www.steelwindows.com
- TCNA Tile Council of North America

https://www.tcnatile.com

Tuscaloosa VAMCDecember 29, 2023Correct Failing Sanitary Sewer, Water Main, FP Deficiencies100% Construction DocumentsTuscaloosa, AL 35404Project No: 679-21-102

TEMA	Tubular Exchanger Manufacturers Association
	http://www.tema.org
TPI	Truss Plate Institute
	https://www.tpinst.org
UBC	The Uniform Building Code
	(See ICC)
UL	Underwriters' Laboratories Incorporated
	https://www.ul.com
ULC	Underwriters' Laboratories of Canada
	https://www.ulc.ca
WCLB	West Coast Lumber Inspection Bureau
	http://www.wclib.org
WDMA	Window and Door Manufacturers Association
	https://www.wdma.com
WRCLA	Western Red Cedar Lumber Association
	https://www.realcedar.com
WWPA	Western Wood Products Association
	http://www.wwpa.org

- - - E N D - - -

SECTION 01 45 00 QUALITY CONTROL

PART 1 - GENERAL

1.1 DESCRIPTION

This section specifies requirements for Contractor Quality Control (CQC) for Design-Bid-Build (DBB) or Design-Build (DB) construction projects. This section can be used for both project types.

1.2 APPLICABLE PUBLICATIONS

- A. The publication listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.
- B. ASTM International (ASTM)
 - D3740 (2012a) Minimum Requirements for Agencies Engaged in the Testing and/or Inspection of Soil and Rock as Used in Engineering Design and Construction
 - E329 (2014a) Standard Specification for Agencies Engaged in the Testing and/or Inspection of Materials Used in Construction

1.3 SUBMITTALS

Government approval is required for all submittals. CQC inspection reports shall be submitted under this Specification section and follow the Applicable CQC Control Phase (Preparatory, Initial, or Follow-Up): naming convention.

- 1. Preconstruction Submittals
 - a. Interim CQC Plan
 - b. CQC Plan
 - c. Additional Requirements for Design Quality Control (DQC) Plan
- 2. Design Data
 - a. Discipline-Specific Checklists
 - b. Design Quality Control
- 3. Test Reports

a. Verification Statement

PART 2 PRODUCTS - NOT USED

PART 3 - EXECUTION

3.1 GENERAL REQUIREMENTS

Establish and maintain an effective quality control (QC) system. that complies with the the contract documents. QC consists of plans, procedures, and organization necessary to produce an end product which complies with the Contract requirements. The QC system covers all design and construction operations, both onsite and offsite, and be keyed to the proposed design and construction sequence. The project superintendent will be held responsible for the quality of work and is subject to removal by the Contracting Office or Authorized designee for non-compliance with the quality requirements specified in the Contract. In this context the highest level manager responsible for the overall construction activities at the site, including quality and production, is the project superintendent. The project superintendent maintains a physical presence at the site at all times and is responsible for all construction and related activities at the site, except as otherwise acceptable to the Contracting Officer.

3.2 CQC PLAN:

A. Submit the CQC Plan no later than CO or Designee to determine during Constructability review - 15 days after receipt of Notice to Proceed (NTP) proposed to implement the requirements of the contract documents. The Government will consider an Interim CQC Plan for the first 90 to match timeline established immediately above days of operation, which must be accepted within 15, business days of NTP. Design and/or construction will be permitted to begin only after acceptance of the CQC Plan or acceptance of an Interim plan applicable to the particular feature of work to be started. Work outside of the accepted Interim CQC Plan will not be permitted to begin until acceptance of a CQC Plan or another Interim CQC Plan containing the additional work scope is accepted.

- B. Content of the CQC Plan: Include, as a minimum, the following to cover all design and construction operations, both onsite and offsite, including work by subcontractors, designers of record consultants, architects/engineers (A/E), fabricators, suppliers, and purchasing agents:
 - A description of the QC organization, including a chart showing lines of authority and acknowledgement that the CQC staff will implement the three phase control system for all aspects of the work specified. Include a CQC System Manager that reports to the project superintendent.
 - 2. The name, qualifications (in resume format) duties, responsibilities, and authorities of each person assigned a CQC function.
 - 3. A copy of the letter to the CQC System Manager signed by an authorized official of the firm which describes the responsibilities and delegates sufficient authorities to adequately perform the functions of the CQC System Manager, including authority to stop work which is not in compliance with the Contract. Letters of direction to all other various quality control representatives outlining duties, authorities, and responsibilities will to the Contracting Officer or Authorized designee. be issued by the CQC System Manager. Furnish copies of these letters
 - 4. Procedures for scheduling, reviewing, certifying, and managing submittals including those of subcontractors, designers of record, consultants, A/E's offsite fabricators, suppliers and purchasing agents. These procedures must be in accordance with Section 01 33 23 Shop Drawings, Product Data, and Samples.
 - 5. Control, verification, and acceptance of testing procedures for each specific test to include the test name, specification paragraph requiring test, feature of work to be tested, test frequency, and person responsible for each test. (Laboratory facilities approved by the Contracting Officer or Authorized designee are required to be used)
 - Procedures for tracking Preparatory, Initial, and Follow-Up control phases and control, verification, and acceptance tests including documentation.
 - 7. Procedures for tracking design and construction deficiencies from identification through acceptable corrective action. Establish

verification procedures that identified deficiencies have been corrected.

- 8. Reporting procedures, including proposed reporting formats.
- 9. A list of the definable features of work. A definable feature of work is a task which is separate and distinct from other tasks has separate control requirements, and is identified by different trades or disciplines, or it is work by the same trade in a different environment. Although each section of specifications can generally be considered as a definable feature of work, there are frequently more than one definable feature under a particular section. This list will be agreed upon during the Coordination meeting.
- 10. Coordinate schedule work with Special Inspections required by Section 01 45 35 Special Inspections, the Statement of Special Inspections and Schedule of Special Inspections. Where the applicable Code issue by the International Code Council (ICC) calls for inspections by the Building Official, the Contractor must include the inspections in the CQC Plan and must perform the inspections required by the applicable ICC. The Contractor must perform these inspections using independent qualified inspectors. Include the Special Inspection Plan requirements in the CQC Plan.
- C. Additional Requirements for Design Quality Control (DQC) Plan: The following additional requirements apply to the DQC Plan for DB projects only and not DBB projects:
 - 1. Submit and maintain a DQC Plan as an effective QC program which assures that all services required by this contract are performed and provided in a manner that meets professional architectural and engineering quality standards. As a minimum, all documents must be technically reviewed by competent, independent reviewers identified in the DQC Plan. The same element that produced the product may not perform the independent technical review (ITR). Correct errors and deficiencies in the design documents prior to submitting them to the Government.
 - 2. Include the design schedule in the master project schedule, showing the sequence of events involved in carrying out the project design tasks within the specific Contract period. This should be at a detailed level of scheduling sufficient to identify all major design tasks, including those that control the flow of work. Include review and correction

periods associated with each item. This should be a forward planning as well as a project monitoring tool. The schedule reflects calendar days and not dates for each activity. If the schedule is changed, submit a revised schedule reflecting the change within 7 calendar days. Include in the DQC Plan the discipline-specific checklists to be used during the design and quality control of each submittal. Submit at each design phase as part of the project documentation these completed disciplinespecific checklists.

- 3. Implement the DQC Plan by a DQC Manager who has the responsibility of being cognizant of and assuring that all documents on the project have been coordinated. This individual must be a person who has verifiable engineering or architectural design experience and is a Professional Engineer or Registered Architect within the state of Construction location. Notify the Contracting Officer or Authorized designee, in writing, of the name of the individual, and the name of an alternate person assigned to the position.
- D. Acceptance of Plan: Acceptance of the Contractor's plan is required prior to the start of design and construction. Acceptance is conditional and will be predicated on satisfactory performance during the design and construction. The Government reserves the right to require the Contractor to make changes in the CQC Plan and operations including removal of personnel as necessary, to obtain the quality specified.
- E. Notification of Changes: After acceptance of the CQC Plan, notify the Contracting Officer or Authorized designee in writing of any proposed change. Proposed changes are subject to acceptance by the Government prior to implementation by the Contractor.

3.3 COORDINATION MEETING:

After the Preconstruction Conference Post-Award Conference before start of design or construction, and prior to acceptance by the Government of the CQC Plan, meet with the Contracting Officer or Authorized designee to discuss the Contractor's quality control system. Submit the CQC Plan a minimum of 5 business days prior to the Coordination Meeting. During the meeting, a mutual understanding of the system details must be developed, including the forms for recording the CC operations, design activities (if applicable), control activities, testing, administration of the system for both onsite and offsite work, and the interrelationship of Contractor's Management and control with the Government's Quality Assurance. Minutes of the meeting will be prepared by the Government, signed by both the Contractor and Contracting Officer or Authorized designee and will become a part of the contract file. There can be occasions when subsequent conferences will be called by either party to reconfirm mutual understandings or address deficiencies in the CQC system or procedures which can require corrective action by the Contractor.

3.4 QUALITY CONTROL ORGANIZATION:

- A. Personnel Requirements: The requirements for the CQC organization are a Safety and Health Manager, CQC System Manager, a Design Quality Manager (if applicable), and sufficient number of additional qualified personnel to ensure safety and Contract compliance. The Safety and Health Manager shall satisfy the requirements of Specification 01 35 26 Safety Requirements and reports directly to a senior project (or corporate) official independent from the CQC System Manager. The Safety and Health Manager will also serve as a member of the CQC Staff. Personnel identified in the technical provisions as requiring specialized skills to assure the required work is being performed properly will also be included as part of the CQC organization. The Contractor's CQC staff maintains a presence at the site at all times during progress of the work and have complete authority and responsibility to take any action necessary to ensure Contract compliance. The CQC staff will be subject to acceptance by the Contracting Officer or Authorized designee. Provide adequate office space, filing systems, and other resources as necessary to maintain an effective and fully functional CQC organization. Promptly complete and furnish all letters, material submittals, shop drawings submittals, schedules, and all other project documentation to the CQC organization. The CQC organization is responsible for maintaining these documents and records at the site at all times, except as otherwise acceptable to the Government.
- B. CQC System Manager: Identify as CQC System Manager an individual within the onsite work organization that is responsible for overall management of CQC and has the authority to act in all CQC matters for the Contractor. The CQC system Manager is required to have 5 years construction experience on construction similar to the scope of this Contract. This CQC System manager is on the site at all times during construction and is employed by the General Contractor. The CQC System Manger is assigned as CQC System

Manager but can have duties as project superintendent in addition to quality control. Identify in the plan an alternate to serve in the event of the CDQC System Manager's absence. The requirements for the alternate are the same as the CQC System Manager.

C. CQC Personnel: In addition to CQC personnel specified elsewhere in the contract, provide as part of the CQC organization specialized personnel to assist in the CQC System Manager for the following areas, as applicable: electrical, mechanical, civil, structural, environmental, architectural, materials technician submittals clerk, LEED specialist, and low voltage systems. These individuals or specified technical companies are directly employed by the General Contractor and cannot be employed by a supplier or subcontractor on this project are employees of the prime or subcontractor; be responsible to the CQC System Manager; be physically present at the construction site during work on the specialized personnel's areas of responsibility; have the necessary education or experience in accordance with the Experience Matrix listed herein. These individuals have no other duties other than quality control. can perform other duties but need to be allowed sufficient time to perform the specialized personnel's assigned quality controls duties as described in the CQC Plan. A single person can cover more than one area provided that the single person is qualified to perform QC activities in each designated and that workload allows.

Area	Qualifications
Civil	Graduate Civil Engineer or Construction Manager with 2 years' experience in the type of work being performed on this project or technician with 5 years related experience.
Mechanical	Graduate Mechanical Engineer with 2 years' experience or construction professional with 5 years of experience supervising mechanical features of work in the field with a construction company.

EXPERIENCE MATRIX

Area	Qualifications
Electrical	Graduate Electrical Engineer with 2 years related experience or construction professional with 5 years of experience supervising electrical features of work in the field with a construction company.
Structural	Graduate Civil Engineer (with Structural Track or Focus), Structural Engineer, or Construction Manager with 2 years' experience or construction professional with 5 years' experience supervising structural features of work in the field with a construction company.
Architectural	Graduate Architect with 2 years' experience or construction professional with 5 years of related experience.
Environmental	Graduate Environmental Engineer with 3 years' experience.
Submittals	Submittal Clerk with 1 year experience.
Concrete, Pavement, and Soils	Materials Technician with 2 years' experience for the appropriate area.
Testing, Adjusting, and Balancing (TAB)	Specialist must be a member of AABC or an experienced technician of the firm certified by the NEBB.
Design Quality Control Manager	Registered Architect or Professional Engineer

- D. Additional Requirements: In addition to the above experience and education requirements, the CQC System Manager and Alternate CQC System Manager are required to have completed the Construction Quality Management (CQM) for Construction course. If the CQC System Manager does not have a current specification, obtain the CQM for Contractors course identification within 90 days of award. This course is periodically offered by the Naval Facilities Engineering Command and the Army Corps of Engineers. Contact the Contracting Officer or Authorized designee for information on the next scheduled class.
- E. Organizational Changes: Maintain the CQC staff at full strength at all times. When it is necessary to make changes to the CQC staff, revise the CQC Plan to reflect the changes and submit the changes to the Contracting Officer or Authorized designee for acceptance.

3.5 **SUBMITTALS AND DELIVERABLES:** Submittals have to comply with the requirements in Section 01 33 23 Shop Drawings, Product Data, and Samples. The CQC organization is responsible for certifying that all submittals and deliverables are in compliance with the contract requirements.

3.6 CONTROL:

- A. CQC is the means by which the Contractor ensures that the construction, to include that of subcontractors and suppliers, complies with the requirements of the contract. At least three phases of control are required to be conducted by the CQC System Manager for each definable feature of the construction work as follows:
- Preparatory Phase: This phase is performed prior to beginning work on each definable feature of work after all required plans/documents/materials are approved/accepted, and after copies are at the work site. This phase includes:
 - a. A review of each paragraph of applicable specifications, references codes, and standards. Make available during the preparatory inspection a copy of those sections of referenced codes and standards applicable to that portion of the work to be accomplished in the field. Maintain and make available in the field for use by Government personnel until final acceptance of the work.
 - b. Review of the Contract drawings.
 - c. Check to assure that all materials and equipment have been tested, submitted, and approved.
 - d. Review of provisions that have been made to provide required control inspection and testing.
 - e. Review Special Inspections required by Section 01 45 35 Special Inspections, that Statement of Special Inspections and the Schedule of Specials Inspections.
 - f. Examination of the work area to assure that all required preliminary work has been completed and is in compliance with the Contract.
 - g. Examination of required materials, equipment, and sample work to assure that they are on hand conform to approved shop drawings or submitted data and are properly stored.
 - h. Review of the appropriate Activity Hazard Analysis (AHA) to assure safety requirements are met.

- i. Discussion of procedures for controlling quality of the work including repetitive deficiencies. Document construction tolerances and workmanship standards - contract defined or industry standard if not contract defined - for that feature of work.
- j. Check to ensure that the portion of the plan for the work to be performed has been accepted by the Contracting Officer.
- k. Discussion of the initial control phase.
- 1. The Government needs to be notified at least 48 hours or 2 business days in advance of beginning the Preparatory control phase. Include a meeting conducted by the CQC System Manager and attended by the superintendent, other CQC personnel (as applicable), and the foreman responsible for the definable feature. Document the results of the Preparatory phase actions by separate minutes prepared by the CQC System Manager and attach to the daily CQC report. Instruct applicable workers as to the acceptable level of workmanship required in order to meet contract specifications.
- B. Initial Phase: This phase is accomplished at the beginning of a definable feature of work. Accomplish the following:
- Check work to ensure that it is in full compliance with contract requirements. Review minutes of the Preparatory meeting.
- Verify adequacy of controls to ensure full contract compliance. Verify the required control inspection and testing is in compliance with the contract.
- Establish level of workmanship and verify that it meets minimum acceptable workmanship standards. Compare with required sample panels as appropriate.
- 4. Resolve all differences.
- Check safety to include compliance with an upgrading of the safety plan and activity hazard analysis. Review the activity analysis with each worker.
- 6. The Government needs to be notified at least 48 hours or 2 business days in advance of beginning the initial phase for definable features of work. Prepare separate minutes of this phase by the CQC System Manager and attach to the daily CQC report. Indicate the exact location of initial phase for definable feature of work for future reference and comparison with Follow-Up phases.

- The initial phase for each definable feature of work is repeated for each new crew to work onsite, or any time acceptable specified quality standards are not being met.
- Coordinate scheduled work with Special Inspections required by Section 01 45 35 Special Inspections, the Statement of Special Inspections, and the Schedule of Special Inspections.

C. Follow-Up Phase: Perform daily checks to assure control activities, including control testing, are providing continued compliance with contract requirements until the completion of the particular feature of work. Record the checks in the CQC documentation. Conduct final Follow-Up checks and correct all deficiencies prior to the start of additional features of work which may be affected by the deficient work. Do not build upon nor conceal non-conforming work. Coordinate scheduled work with Special Inspections required by Section 01 45 35 Special Inspections, the Statement of Special Inspections, and the Schedule of Special Inspections

D. Additional Preparatory and Initial Phases on the same definable features of work if: the quality ongoing work is unacceptable; if there are changes in the applicable CQC staff, onsite production supervision or work crew; if work on a definable feature is resumed after a substantial period of inactivity, or if other problems develop.

3.7 TESTS

- A. Testing Procedure: Perform specified or required tests to verify that control measures are adequate to provide a product which conforms to contract requirements. Upon request, furnish to the Government duplicate samples of test specimens for possible testing by the Government. Testing includes operation and acceptance test when specified. Procure the services of a Department of Veteran Affairs approved testing laboratory or establish an approved testing laboratory at the project site. Perform the following activities and record and provide the following data:
 - 1. Verify that testing procedures comply with contract requirements.
 - Verify that facilities and testing equipment are available and comply with testing standards.
 - 3. Check test instrument calibration data against certified standards.
 - Verify that recording forms and test identification control number system, including all of the test documentation requirements, have been prepared.

Tuscaloosa VAMCDecember 29, 2023Correct Failing Sanitary Sewer, Water Main, FP Deficiencies100% Construction DocumentsTuscaloosa, AL 35404Project No: 679-21-102

- 5. Record results of all tests taken, both passing and failing on the CQC report for the date taken. Specification paragraph reference, location where tests were taken, and the unique sequential control number identifying the test. If approved by the Contracting Officer or Authorized designee, actual test reports are submitted later with a reference to the test number and date taken. Provide an information copy of tests performed by an offsite or commercial test facility directly to the Contracting Officer or Authorized designee. Failure to submit timely test reports as stated results in nonpayment for related work performed and disapproval of the test facility for this Contract.
- B. Testing Laboratories: All testing laboratories must be validated through the procedures contained in Specification section 01 45 29 Testing Laboratory Services.
 - Capability Check: The Government reserves the right to check laboratory equipment in the proposed laboratory for compliance with the standards set forth in the contract specifications and to check the laboratory technician's testing procedures and techniques. Laboratories utilized for testing soils, concrete, asphalt and steel is required to meet criteria detailed in ASTM D3740 and ASTM E329.
 - 2. Capability Recheck: If the selected laboratory fails the capability check, the Contractor will be assessed a charge equal to value of recheck to reimburse the Government for each succeeding recheck of the laboratory or the checking of a subsequently selected laboratory. Such costs will be deducted from the Contract amount due the Contractor.
- C. Onsite Laboratory: The Government reserves the right to utilize the Contractor's control testing laboratory and equipment to make assurance tests, and to check the Contractor's testing procedures, techniques, and test results at no additional cost to the Government.

3.8 COMPLETION INSPECTION

A. Punch-Out Inspection: Conduct an inspection of the work by the CQC system Manager near the end of the work, or any increment of the work established by the specifications. Prepare and include in the CQC documentation a punch list of items which do not conform to the approved drawings and specifications. Include within the list of deficiencies the estimated date by which the deficiencies will be corrected. Make a second inspection the CQC System Manager or staff to ascertain that all deficiencies have been corrected. Once this is accomplished, notify the Government that the facility is ready for the Government Pre-Final Inspection.

- B. Pre-Final Inspection: The Government will perform the Pre-Final Inspection to verify that the facility is complete and ready to be occupied. A Government Pre-Final Punch List may be developed as a result of this inspection. Ensure that all items on this list have been corrected before notifying the Government, so that a Final Acceptance Inspection with the customer can be scheduled. Correct any items noted on the Pre-Final Inspection in a timely manner. These inspections and any deficiency corrections required by this paragraph need to be accomplished within the time slated for completion of the entire work or any particular increment of the work if the project is divided into increments by separate construction completion dates.
- C. Final Acceptance Inspection: The Contractor's QC Inspection personnel, plus the superintendent or other primary management person, and the Contracting Officer's Authorized designer is required to be in attendance at the Final Acceptance Inspection. Additional Government personnel can also be in attendance. The Final Acceptance Inspection will be formally scheduled by the Contracting Officer's or Authorized designee based upon results of the Pre-Final Inspection. Notify the Contracting Officer through the Resident Engineer office at least 14 days prior to the Final Acceptance Inspection and include the Contractor's assurance that all specific items previously identified to the Contractor as being unacceptable, along with all remaining work performed under the contract, will be complete and acceptable by the date schedule for the Final Acceptance Inspection. Failure of the Contractor to have all contract work acceptably complete for this inspection will be cause for the Contracting Officer to bill the Contractor for the Government's additional inspection cost in accordance with the contract documents.

3.9 DOCUMENTATION

A. Quality Control Activities: Maintain current records providing factual evidence that required QC activities and tests have been performed. Include in these records the work of subcontractors and suppliers on an acceptable form that includes, as a minimum, the following information:
1. The name and area of responsibility of the Contractor/Subcontractor
2. Operating plant/equipment with hours worked, idle, or down for repair.
- 3. Work performed each day, giving location, description, and by whom. When Network Analysis (NAS) is used, identify each phase of work performed each day by NAS activity number.
- 4. Test and control activities performed with results and references to specification/drawing requirements. Identify the Control Phase (Preparatory, Initial, and/or Follow-Up). List deficiencies noted, along with corrective action.
- Quantity of materials received at the site with statement as to acceptability, storage, and reference to specification/drawing requirements.
- Submittals and deliverables reviewed, with Contract reference, by whom, and action taken.
- 7. Offsite surveillance activities, including actions taken.
- Job safety evaluations stating what was checked, results, and instructions or corrective actions.
- 9. Instructions given/received and conflicts in plans and specifications.
- 10. Provide documentation of design quality control activities. For independent design reviews, provide, as a minimum, identification of the Independent Technical Reviewer (ITR) team, the ITR review comments, responses, and the record of resolution of the comments.
- B. Verification Statement: Indicate a description of trades working on the project; the number of personnel working; weather conditions encountered; and any delays encountered. Cover both conforming and deficient features and include a statement that equipment and materials incorporated in the work and workmanship comply with the Contract. Furnish the original and one copy of these records in report form to the Government daily with 1 week after the date covered by the report, except that reports need not be submitted for days on which no work is performed. As a minimum, prepare and submit on report for every 7 days of no work and on the last day of a no work period. All calendar days need to be accounted for throughout the life of the contract. The first report following a day of no work will be for that day only. Reports need to be signed and dated by the CQC System Manager. Include copies of test reports and copies of reports prepared by all subordinate QC personnel within the CQC System Manager Report.

3.10 SAMPLE FORMS

Templates of various quality control reports can be found on the Whole Building Design Guide website at <u>https://www.wbdg.org/FFC/NAVGRAPH/</u> 01%2045%2000.00%2020 quality control reports.pdf

3.11 NOTIFICATION OF NONCOMPLIANCE: The Contracting Officer or Authorized designee will notify the Contractor of any detected noncompliance with the foregoing requirements. The Contractor should take immediate corrective action after receipt of such notice. Such notice, when delivered to the Contractor at the work site will be deemed sufficient for the purpose of notification. If the Contractor fails or refuses to comply promptly, the Contracting Officer can issue an order stopping all or part of the work until satisfactory corrective action has been taken. No part of the time lost due to such stop orders will be made the subject of claim for extension of time or for excess costs or damages by the Contractor.

--- End of Section ---

SECTION 01 45 29 TESTING LABORATORY SERVICES

PART 1 - GENERAL

1.1 DESCRIPTION:

This section specifies materials testing activities and inspection services required during project construction to be provided by a Testing Laboratory retained by the General Contractor.

1.2 APPLICABLE PUBLICATIONS:

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by the basic designation only.
- B. American Association of State Highway and Transportation Officials (AASHTO): T27-11.....Standard Method of Test for Sieve Analysis of Fine and Coarse Aggregates T96-02 (R2006).....Standard Method of Test for Resistance to Degradation of Small-Size Coarse Aggregate by Abrasion and Impact in the Los Angeles Machine T99-10.....Standard Method of Test for Moisture-Density Relations of Soils Using a 2.5 Kg (5.5 lb.) Rammer and a 305 mm (12 in.) Drop T104-99 (R2007).....Standard Method of Test for Soundness of Aggregate by Use of Sodium Sulfate or Magnesium Sulfate T180-10.....Standard Method of Test for Moisture-Density Relations of Soils using a 4.54 kg (10 lb.) Rammer and a 457 mm (18 in.) Drop T191-02(R2006).....Standard Method of Test for Density of Soil In-Place by the Sand-Cone Method T310-13.....Standard Method of Test for In-place Density and Moisture Content of Soil and Soil-aggregate by Nuclear Methods (Shallow Depth) C. American Concrete Institute (ACI):

506.4R-94 (R2004).....Guide for the Evaluation of Shotcrete

D.	American Society for Testing and Materials (ASTM):
	A370-12 Definitions for
	Mechanical Testing of Steel Products
	A416/A416M-10Standard Specification for Steel Strand, Uncoated
	Seven-Wire for Prestressed Concrete
	C31/C31M-10Standard Practice for Making and Curing Concrete
	Test Specimens in the Field
	C33/C33M-11aStandard Specification for Concrete Aggregates
	C39/C39M-12Standard Test Method for Compressive Strength of
	Cylindrical Concrete Specimens
	C109/C109M-11bStandard Test Method for Compressive Strength of
	Hydraulic Cement Mortars
	C136-06 Standard Test Method for Sieve Analysis of Fine
	and Coarse Aggregates
	C138/C138M-10bStandard Test Method for Density (Unit Weight),
	Yield, and Air Content (Gravimetric) of Concrete
	C140-12 Standard Test Methods for Sampling and Testing
	Concrete Masonry Units and Related Units
	C143/C143M-10aStandard Test Method for Slump of Hydraulic Cement
	Concrete
	C172/C172M-10Standard Practice for Sampling Freshly Mixed
	Concrete
	C173/C173M-10bStandard Test Method for Air Content of freshly
	Mixed Concrete by the Volumetric Method
	C330/C330M-09Standard Specification for Lightweight Aggregates
	for Structural Concrete
	C567/C567M-11Standard Test Method for Density Structural
	Lightweight Concrete
	C780-11Standard Test Method for Pre-construction and
	Construction Evaluation of Mortars for Plain and
	Reinforced Unit Masonry
	C1019-11 Standard Test Method for Sampling and Testing
	Grout
	C1064/C1064M-11Standard Test Method for Temperature of Freshly
	Mixed Portland Cement Concrete

C1077-11c.....Standard Practice for Agencies Testing Concrete and Concrete Aggregates for Use in Construction and Criteria for Testing Agency Evaluation C1314-11a.....Standard Test Method for Compressive Strength of Masonry Prisms D422-63(2007).....Standard Test Method for Particle-Size Analysis of Soils D698-07e1..... Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort D1140-00(2006).....Standard Test Methods for Amount of Material in Soils Finer than No. 200 Sieve D1143/D1143M-07e1.....Standard Test Methods for Deep Foundations Under Static Axial Compressive Load D1188-07e1.....Standard Test Method for Bulk Specific Gravity and Density of Compacted Bituminous Mixtures Using Coated Samples D1556-07.....Standard Test Method for Density and Unit Weight of Soil in Place by the Sand-Cone Method D1557-09..... Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort (56,000ft lbf/ft3 (2,700 KNm/m3)) D2166-06.....Standard Test Method for Unconfined Compressive Strength of Cohesive Soil D2167-08).....Standard Test Method for Density and Unit Weight of Soil in Place by the Rubber Balloon Method D2216-10..... Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass D2974-07a......Standard Test Methods for Moisture, Ash, and Organic Matter of Peat and Other Organic Soils D3666-11.....Requirements for Agencies Testing and Inspecting Road and Paving Materials D3740-11..... Standard Practice for Minimum Requirements for Agencies Engaged in Testing and/or Inspection of

	Soil and Rock as used in Engineering Design and
	Construction
D6938-10	.Standard Test Method for In-Place Density and
	Water Content of Soil and Soil-Aggregate by
	Nuclear Methods (Shallow Depth)
E94-04(2010)	.Standard Guide for Radiographic Examination
E164-08	.Standard Practice for Contact Ultrasonic Testing
	of Weldments
E329-11c	.Standard Specification for Agencies Engaged in
	Construction Inspection, Testing, or Special
	Inspection
E543-09	.Standard Specification for Agencies Performing
	Non-Destructive Testing
E605-93(R2011)	.Standard Test Methods for Thickness and Density of
	Sprayed Fire Resistive Material (SFRM) Applied to
	Structural Members
E709-08	.Standard Guide for Magnetic Particle Examination
E1155-96(R2008)	.Determining FF Floor Flatness and FL Floor
	Levelness Numbers
F3125/F3125M-15	.Standard Specification for High Strength
	Structural Bolts, Steel and Alloy Steel, Heat
	Treated, 120 ksi (830 MPa) and 150 ksi (1040 MPa)
	Minimum Tensile Strength, Inch and Metric
	Dimensions

E. American Welding Society (AWS): D1.D1.1M-10.....Structural Welding Code-Steel

1.3 REQUIREMENTS:

A. Accreditation Requirements: Construction materials testing laboratories must be accredited by a laboratory accreditation authority and will be required to submit a copy of the Certificate of Accreditation and Scope of Accreditation. The laboratory's scope of accreditation must include the appropriate ASTM standards (i.e.; E329, C1077, D3666, D3740, A880, E543) listed in the technical sections of the specifications. Laboratories engaged in Hazardous Materials Testing shall meet the requirements of OSHA and EPA. The policy applies to the specific laboratory performing the actual testing, not just the "Corporate Office."

- B. Inspection and Testing: Testing laboratory shall inspect materials and workmanship and perform tests described herein and additional tests requested by Resident Engineer. When it appears materials furnished, or work performed by Contractor fail to meet construction contract requirements, Testing Laboratory shall direct attention of Resident Engineer to such failure.
- C. Written Reports: Testing laboratory shall submit test reports to Resident Engineer, Contractor, unless other arrangements are agreed to in writing by the Resident Engineer. Submit reports of tests that fail to meet construction contract requirements on colored paper.
- D. Verbal Reports: Give verbal notification to Resident Engineer immediately of any irregularity.

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION

3.1 EARTHWORK:

- A. General: The Testing Laboratory shall provide qualified personnel, materials, equipment, and transportation as required to perform the services identified/required herein, within the agreed to schedule and/or time frame. The work to be performed shall be as identified herein and shall include but not be limited to the following:
 - 1. Observe fill and subgrades during proof-rolling to evaluate suitability of surface material to receive fill or base course. Provide recommendations to the Resident Engineer regarding suitability or unsuitability of areas where proof-rolling was observed. Where unsuitable results are observed, witness excavation of unsuitable material and recommend to Resident Engineer extent of removal and replacement of unsuitable materials and observe proof-rolling of replaced areas until satisfactory results are obtained.
 - 2. Provide part time observation of fill placement and compaction and field density testing in building areas and provide part time observation of fill placement and compaction and field density testing in pavement areas to verify that earthwork compaction obtained is in accordance with contract documents.
 - 3. Provide supervised geotechnical technician to inspect excavation, subsurface preparation, and backfill for structural fill.
- B. Testing Compaction:

- Determine maximum density and optimum moisture content for each type of fill, backfill and subgrade material used, in compliance with ASTM D1557.
- 2. Make field density tests in accordance with the primary testing method following. Field density tests utilizing ASTM D1556 shall be utilized on a case by case basis only if there are problems with the validity of the results from the primary method due to specific site field conditions. Should the testing laboratory propose these alternative methods, they should provide satisfactory explanation to the Resident Engineer before the tests are conducted.
 - a. Building Slab Subgrade: At least one test of subgrade for every 185 m^2 (2000 square feet) of building slab, but in no case fewer than three tests. In each compacted fill layer, perform one test for every 185 m^2 (2000 square feet) of overlaying building slab, but in no case fewer than three tests.
 - b. Foundation Wall Backfill: One test per 30 m (100 feet) of each layer of compacted fill but in no case fewer than two tests.
 - c. Pavement Subgrade: One test for each 335 $\rm m^2$ (400 square yards), but in no case fewer than two tests.
 - d. Curb, Gutter, and Sidewalk: One test for each 90 m (300 feet), but in no case fewer than two tests.
 - e. Trenches: One test at maximum 30 m (100 foot) intervals per 1200 mm (4 foot) of vertical lift and at changes in required density, but in no case fewer than two tests.
 - f. Footing Subgrade: At least one test for each layer of soil on which footings will be placed. Subsequent verification and approval of each footing subgrade may be based on a visual comparison of each subgrade with related tested subgrade when acceptable to Resident Engineer. In each compacted fill layer below wall footings, perform one field density test for every 30 m (100 feet) of wall. Verify subgrade is level, all loose or disturbed soils have been removed, and correlate actual soil conditions observed with those indicated by test borings.
- C. Fill and Backfill Material Gradation: One test per 200 yards stockpiled or in-place source material. Gradation of fill and backfill material shall be determined in accordance with ASTM D422.

- D. Testing for Footing Bearing Capacity: Evaluate if suitable bearing capacity material is encountered in footing subgrade.
- E. Testing Materials: Test suitability of on-site and off-site borrow as directed by Resident Engineer.

3.4 LANDSCAPING:

- A. Test topsoil for organic materials, pH, phosphate, potash content, and gradation of particles.
 - 1. Test for organic material by using ASTM D2974.
 - Determine percent of silt, sand, clay, and foreign materials such as rock, roots, and vegetation.
- B. Submit laboratory test report of topsoil to Resident Engineer.

3.5 ASPHALT CONCRETE PAVING:

- A. Aggregate Base Course:
 - 1. Determine maximum density and optimum moisture content for aggregate base material in accordance with ASTM D1557, Method D
 - Make a minimum of three field density tests on each day's final compaction on each aggregate course in accordance with ASTM D1556.
 - 3. Sample and test aggregate as necessary to ensure compliance with specification requirements for gradation, wear, and soundness as specified in the applicable state highway standards and specifications.
- B. Asphalt Concrete:
 - Aggregate: Sample and test aggregates in stockpile and hot-bins as necessary to insure compliance with specification requirements for gradation (AASHTO T27), wear (AASHTO T96), and soundness (AASHTO T104).
 - Temperature: Check temperature of each load of asphalt concrete at mixing plant and at site of paving operation.
 - Density: Make a minimum of two field density tests in accordance with ASTM D1188 of asphalt base and surface course for each day's paving operation.

3.6 SITE WORK CONCRETE:

Test site work concrete including materials for concrete as required in Article CONCRETE of this section.

3.8 CONCRETE:

- A. Batch Plant Inspection and Materials Testing:
 - Periodically inspect and test batch proportioning equipment for accuracy and report deficiencies to Resident Engineer.

- 2. Sample and test mix ingredients as necessary to ensure compliance with specifications.
- 43. Sample and test aggregates daily and as necessary for moisture content. Test the dry rodded weight of the coarse aggregate whenever a sieve analysis is made, and when it appears there has been a change in the aggregate.
- 4. Certify, in duplicate, ingredients and proportions and amounts of ingredients in concrete conform to approved trial mixes. When concrete is batched or mixed off immediate building site, certify (by signing, initialing, or stamping thereon) on delivery slips (duplicate) that ingredients in truck-load mixes conform to proportions of aggregate weight, cement factor, and water-cement ratio of approved trial mixes.
- B. Field Inspection and Materials Testing:
 - Review the delivery tickets of the ready-mix concrete trucks arriving on-site. Notify the Contractor if the concrete cannot be placed within the specified time limits or if the type of concrete delivered is incorrect. Reject any loads that do not comply with the Specification requirements. Rejected loads are to be removed from the site at the Contractor's expense. Any rejected concrete that is placed will be subject to removal.
 - 2 Take concrete samples at point of placement in accordance with ASTM C172. Mold and cure compression test cylinders in accordance with ASTM C31. Make at least three cylinders for each 40 m³ (50 cubic yards) or less of each concrete type, and at least three cylinders for any one day's pour for each concrete type. After good concrete quality control has been established and maintained as determined by Resident Engineer make three cylinders for each 80 m³ (100 cubic yards) or less of each concrete type. Label each cylinders from any one day's pour for each concrete type. Label each cylinder with an identification number. Resident Engineer may require additional cylinders to be molded and cured under job conditions.
 - 3. Perform slump tests in accordance with ASTM C143. Test the first truck each day, and every time test cylinders are made. Test pumped concrete at the hopper and at the discharge end of the hose at the beginning of each day's pumping operations to determine change in slump.

- 4. Determine the air content of concrete per ASTM C173. For concrete required to be air-entrained, test the first truck and every 20 m³ (25 cubic yards) thereafter each day. For concrete not required to be airentrained, test every 80 m³ (100 cubic yards) at random. For pumped concrete, initially test concrete at both the hopper and the discharge end of the hose to determine change in air content.
- 5. If slump or air content fall outside specified limits, make another test immediately from another portion of same batch.
- Perform unit weight tests in compliance with ASTM C138 for normal weight concrete and ASTM C567 for lightweight concrete. Test the first truck and each time cylinders are made.
- 7. Notify laboratory technician at batch plant of mix irregularities and request materials and proportioning check.
- 8. Verify that specified mixing has been accomplished.
- 9. Environmental Conditions: Determine the temperature per ASTM C1064 for each truckload of concrete during hot weather and cold weather concreting operations:
 - a. When ambient air temperature falls below 4.4 degrees C (40 degrees F), record maximum and minimum air temperatures in each 24 hour period; record air temperature inside protective enclosure; record minimum temperature of surface of hardened concrete.
 - b. When ambient air temperature rises above 29.4 degrees C (85 degrees F), record maximum and minimum air temperature in each 24 hour period; record minimum relative humidity; record maximum wind velocity; record maximum temperature of surface of hardened concrete.
- 10. Inspect the reinforcing steel placement, including bar size, bar spacing, top and bottom concrete cover, proper tie into the chairs, and grade of steel prior to concrete placement. Submit detailed report of observations.
- 11. Observe conveying, placement, and consolidation of concrete for conformance to specifications.
- 12. Observe condition of formed surfaces upon removal of formwork prior to repair of surface defects and observe repair of surface defects.

- 13. Observe curing procedures for conformance with specifications, record dates of concrete placement, start of preliminary curing, start of final curing, end of curing period.
- 14. Observe preparations for placement of concrete:
 - a. Inspect handling, conveying, and placing equipment, inspect vibrating and compaction equipment.
 - b. Inspect preparation of construction, expansion, and isolation joints.
- 15. Observe preparations for protection from hot weather, cold weather, sun, and rain, and preparations for curing.
- 16. Observe concrete mixing:
 - a. Monitor and record amount of water added at project site.
 - b. Observe minimum and maximum mixing times.
- 17. Other inspections:
 - a. Grouting under base plates.
 - b. Grouting anchor bolts and reinforcing steel in hardened concrete.
- C. Laboratory Tests of Field Samples:
 - Test compression test cylinders for strength in accordance with ASTM C39. For each test series, test one cylinder at 7 days and one cylinder at 28 days. Use remaining cylinder as a spare tested as directed by Resident Engineer. Compile laboratory test reports as follows: Compressive strength test shall be result of one cylinder, except when one cylinder shows evidence of improper sampling, molding or testing, in which case it shall be discarded, and strength of spare cylinder shall be used.
 - 2. Make weight tests of hardened lightweight structural concrete in accordance with ASTM C567.
 - 3. Furnish certified compression test reports (duplicate) to Resident Engineer. In test report, indicate the following information:
 - a. Cylinder identification number and date cast.
 - b. Specific location at which test samples were taken.
 - c. Type of concrete, slump, and percent air.
 - d. Compressive strength of concrete in MPa (psi).
 - e. Weight of lightweight structural concrete in kg/m^3 (pounds per cubic feet).
 - f. Weather conditions during placing.

- g. Temperature of concrete in each test cylinder when test cylinder was molded.
- h. Maximum and minimum ambient temperature during placing.
- i. Ambient temperature when concrete sample in test cylinder was taken.
- j. Date delivered to laboratory and date tested.

3.9 REINFORCEMENT:

A. Review mill test reports furnished by Contractor.

3.12 ARCHITECTURAL PRECAST CONCRETE:

- A. Inspection at Plant: Forms, placement of reinforcing steel, concrete cover, and placement and finishing of concrete.
- B. Concrete Testing: Test concrete including materials for concrete as required in Article CONCRETE of this section, except make two test cylinders for each day's production of each strength of concrete produced.
- C. Inspect members to ensure specification requirements for curing and finishes have been met.

3.13 MASONRY:

- A. Mortar Tests:
 - 1. Laboratory compressive strength test:
 - a. Comply with ASTM C780.
 - b. Obtain samples during or immediately after discharge from batch mixer.
 - c. Furnish molds with 50 mm (2 inch), 3 compartment gang cube.
 - d. Test one sample at 7 days and 2 samples at 28 days.
 - Two tests during first week of operation; one test per week after initial test until masonry completion.
- B. Grout Tests:
 - 1. Laboratory compressive strength test:
 - a. Comply with ASTM C1019.
 - b. Test one sample at 7 days and 2 samples at 28 days.
 - c. Perform test for each 230 $\ensuremath{\text{m}}^2$ (2500 square feet) of masonry.
- C. Masonry Unit Tests:
 - 1. Laboratory Compressive Strength Test:
 - a. Comply with ASTM C140.
 - b. Test 3 samples for each 460 m^2 (5000 square feet) of wall area.
- D. Prism Tests: For each type of wall construction indicated, test masonry prisms per ASTM C1314 for each 460 m² (5000 square feet) of wall area.

Prepare one set of prisms for testing at 7 days and one set for testing at 28 days.

3.14 STRUCTURAL STEEL:

- A. General: Provide shop and field inspection and testing services to certify structural steel work is done in accordance with contract documents.Welding shall conform to AWS D1.1 Structural Welding Code.
- B. Prefabrication Inspection:
 - Review design and shop detail drawings for size, length, type and location of all welds to be made.
 - 2. Approve welding procedure qualifications either by pre-qualification or by witnessing qualifications tests.
 - 3. Approve welder qualifications by certification or retesting.
 - 4. Approve procedure for control of distortion and shrinkage stresses.
 - 5. Approve procedures for welding in accordance with applicable sections of AWS D1.1.
- C. Fabrication and Erection:
 - 1. Weld Inspection:
 - a. Inspect welding equipment for capacity, maintenance and working condition.
 - b. Verify specified electrodes and handling and storage of electrodes in accordance with AWS D1.1.
 - c. Inspect preparation and assembly of materials to be welded for conformance with AWS D1.1.
 - d. Inspect preheating and interpass temperatures for conformance with AWS D1.1.
 - e. Measure 25 percent of fillet welds.
 - f. Welding Magnetic Particle Testing: Test in accordance with ASTM E709 for a minimum of:
 - 20 percent of all shear plate fillet welds at random, final pass only.
 - 20 percent of all continuity plate and bracing gusset plate fillet welds, at random, final pass only.
 - 3) 100 percent of tension member fillet welds (i.e., hanger connection plates and other similar connections) for root and final passes.

- 20 percent of length of built-up column member partial penetration and fillet welds at random for root and final passes.
- 5) 100 percent of length of built-up girder member partial penetration and fillet welds for root and final passes.
- g. Welding Ultrasonic Testing: Test in accordance with ASTM E164 and AWS D1.1 for 100 percent of all full penetration welds, braced and moment frame column splices, and a minimum of 20 percent of all other partial penetration column splices, at random.
- h. Welding Radiographic Testing: Test in accordance with ASTM E94, and AWS D1.1 for 5 percent of all full penetration welds at random.
- i. Verify that correction of rejected welds are made in accordance with AWS D1.1.
- j. Testing and inspection do not relieve the Contractor of the responsibility for providing materials and fabrication procedures in compliance with the specified requirements.
- 2. Bolt Inspection:
 - a. Inspect high-strength bolted connections in accordance AISC Specifications for Structural Joints Using ASTM F3125 Bolts.
 - b. Slip-Critical Connections: Inspect 10 percent of bolts, but not less than 2 bolts, selected at random in each connection in accordance with AISC Specifications for Structural Joints Using ASTM F3125 Bolts. Inspect all bolts in connection when one or more are rejected.
 - c. Fully Pre-tensioned Connections: Inspect 10 percent of bolts, but not less than 2 bolts, selected at random in 25 percent of connections in accordance with AISC Specification for Structural Joints Using ASTM F3125 Bolts. Inspect all bolts in connection when one or more are rejected.
 - d. Bolts installed by turn-of-nut tightening may be inspected with calibrated wrench when visual inspection was not performed during tightening.
 - e. Snug Tight Connections: Inspect 10 percent of connections verifying that plies of connected elements have been brought into snug contact.
 - f. Inspect field erected assemblies; verify locations of structural steel for plumbness, level, and alignment.

D. Submit inspection reports, record of welders and their certification, and identification, and instances of noncompliance to Resident Engineer.

3.16 SHEAR CONNECTOR STUDS:

- A. Provide field inspection and testing services required by AWS D.1 to ensure shear connector studs have been installed in accordance with contract documents.
- B. Tests: Test 20 percent of headed studs for fastening strength in accordance with AWS D1.1.
- C. Submit inspection reports, certification, and instances of noncompliance to Resident Engineer.

3.17 SPRAYED-ON FIREPROOFING:

- A. Provide field inspection and testing services to certify sprayed-on fireproofing has been applied in accordance with contract documents.
- B. Obtain a copy of approved submittals from Resident Engineer.
- C. Use approved installation in test areas as criteria for inspection of work.
- D. Test sprayed-on fireproofing for thickness and density in accordance with ASTM E605.
 - Thickness gauge specified in ASTM E605 may be modified for pole extension so that overhead sprayed material can be reached from floor.
- E. Location of test areas for field tests as follows:
 - Thickness: Select one bay per floor, or one bay for each 930 m² (10,000 square feet) of floor area, whichever provides for greater number of tests. Take thickness determinations from each of following locations: Metal deck, beam, and column.
 - Density: Take density determinations from each floor, or one test from each 930 m² (10,000 square feet) of floor area, whichever provides for greater number of tests, from each of the following areas: Underside of metal deck, beam flanges, and beam web.
- F. Submit inspection reports, certification, and instances of noncompliance to Resident Engineer.

3.18 TYPE OF TEST:

- A. Earthwork: Laboratory Compaction Test, Soils: ASTM D1557
- B. Landscaping:

Topsoil Test

- C. Aggregate Base: Laboratory Compaction, ASTM D1557 Field Density, ASTM D1556
- D. Concrete:

Making and Curing Concrete Test Cylinders (ASTM C31) ____ Compressive Strength, Test Cylinders (ASTM C39) ____ Concrete Slump Test (ASTM C143) ____ Concrete Air Content Test (ASTM C173) Unit Weight, Lightweight Concrete (ASTM C567) Aggregate, Normal Weight: Gradation (ASTM C33) Deleterious Substances (ASTM C33) Soundness (ASTM C33) Abrasion (ASTM C33) Aggregate, Lightweight Gradation (ASTM C330)

E. Technical Personnel:

(Minimum ____12____ months)

 Technicians to perform tests and inspection listed above. Laboratory will be equipped with concrete cylinder storage facilities, compression machine, cube molds, proctor molds, balances, scales, moisture ovens, slump cones, air meter, and all necessary equipment for compaction control.

- - - E N D - -

SECTION 01 57 19 TEMPORARY ENVIRONMENTAL CONTROLS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the control of environmental pollution and damage that the Contractor must consider for air, water, and land resources. It includes management of visual aesthetics, noise, solid waste, radiant energy, and radioactive materials, as well as other pollutants and resources encountered or generated by the Contractor. The Contractor is obligated to consider specified control measures with the costs included within the various contract items of work.
- B. Environmental pollution and damage are defined as the presence of chemical, physical, or biological elements or agents which:
 - 1. Adversely affect human health or welfare,
 - 2. Unfavorably alter ecological balances of importance to human life,
 - 3. Effect other species of importance to humankind.
 - Degrade the utility of the environment for aesthetic, cultural, and historical purposes.

C. Definitions of Pollutants:

- Chemical Waste: Petroleum products, bituminous materials, salts, acids, alkalis, herbicides, pesticides, organic chemicals, and inorganic wastes.
- Debris: Combustible and noncombustible wastes, such as leaves, tree trimmings, ashes, and waste materials resulting from construction or maintenance and repair work.
- 3. Sediment: Soil and other debris that has been eroded and transported by runoff water.
- Solid Waste: Rubbish, debris, garbage, and other discarded solid materials resulting from industrial, commercial, and agricultural operations and from community activities.
- 5. Surface Discharge: The term "Surface Discharge" implies that the water is discharged with possible sheeting action and subsequent soil erosion may occur. Waters that are surface discharged may terminate in drainage ditches, storm sewers, creeks, and/or "water of the United States" and would require a permit to discharge water from the governing agency.

- 6. Rubbish: Combustible and noncombustible wastes such as paper, boxes, glass and crockery, metal and lumber scrap, tin cans, and bones.
- 7. Sanitary Wastes:
 - a. Sewage: Domestic sanitary sewage and human and animal waste.
 - b. Garbage: Refuse and scraps resulting from preparation, cooking, dispensing, and consumption of food.

1.2 QUALITY CONTROL

- A. Establish and maintain quality control for the environmental protection of all items set forth herein.
- B. Record on daily reports any problems in complying with laws, regulations, and ordinances. Note any corrective action taken.

1.3 REFERENCES

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only.
- B. U.S. National Archives and Records Administration (NARA):
 - 1. 33 CFR 328 Definitions

1.4 SUBMITTALS

- A. In accordance with Section, 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, furnish the following:
 - 1. Environmental Protection Plan: After the contract is awarded and prior to the commencement of the work, the Contractor shall meet with the Contracting Officer's Representative (COR) to discuss the proposed Environmental Protection Plan and to develop mutual understanding relative to details of environmental protection. Not more than 20 days after the meeting, the Contractor shall prepare and submit to the Contracting Officer for approval, a written and/or graphic Environmental Protection Plan including, but not limited to, the following:
 - a. Name(s) of person(s) within the Contractor's organization who is (are) responsible for ensuring adherence to the Environmental Protection Plan.
 - b. Name(s) and qualifications of person(s) responsible for manifesting hazardous waste to be removed from the site.
 - c. Name(s) and qualifications of person(s) responsible for training the Contractor's environmental protection personnel.

- d. Description of the Contractor's environmental protection personnel training program.
- 2. A list of Federal, State, and local laws, regulations, and permits concerning environmental protection, pollution control, noise control and abatement that are applicable to the Contractor's proposed operations and the requirements imposed by those laws, regulations, and permits.
- 3. Methods for protection of features to be preserved within authorized work areas including trees, shrubs, vines, grasses, ground cover, landscape features, air and water quality, fish and wildlife, soil, historical, and archeological and cultural resources.
- 4. Procedures to provide the environmental protection that comply with the applicable laws and regulations. Describe the procedures to correct pollution of the environment due to accident, natural causes, or failure to follow the procedures as described in the Environmental Protection Plan.
- 5. Permits, licenses, and the location of the solid waste disposal area.
- 6. Drawings showing locations of any proposed temporary excavations or embankments for haul roads, stream crossings, material storage areas, structures, sanitary facilities, and stockpiles of excess or spoil materials. Include as part of an Erosion Control Plan approved by the District Office of the U.S. Soil Conservation Service and the Department of Veterans Affairs.
- 7. Environmental Monitoring Plans for the job site including land, water, air, and noise.
- 8. Work Area Plan showing the proposed activity in each portion of the area and identifying the areas of limited use or nonuse. Plan should include measures for marking the limits of use areas. This plan may be incorporated within the Erosion Control Plan.
- 9. Inclusion of "best management practices" and methodologies.
- 10. Approval of the Contractor's Environmental Protection Plan will not relieve the Contractor of responsibility for adequate and continued control of pollutants and other environmental protection measures.

1.5 PROTECTION OF ENVIRONMENTAL RESOURCES

A. Protect environmental resources within the project boundaries and those affected outside the limits of permanent work during the entire period of

this contract. Confine activities to areas defined by the specifications and drawings.

- B. Protection of Land Resources: Prior to construction, identify all land resources to be preserved within the work area. Do not remove, cut, deface, injure, or destroy land resources including trees, shrubs, vines, grasses, topsoil, and landforms without permission from the COR. Do not fasten or attach ropes, cables, or guys to trees for anchorage unless specifically authorized, or where special emergency use is permitted. Provide erosion control plans, in phases where required.
 - Work Area Limits: Prior to any construction, mark the areas that require work to be performed under this contract. Mark or fence isolated areas within the general work area that are to be saved and protected. Protect monuments, works of art, and markers before construction operations begin. Convey to all personnel the purpose of marking and protecting all necessary objects.
 - Protection of Landscape: Protect trees, shrubs, vines, grasses, landforms, and other landscape features shown on the drawings to be preserved by marking, fencing, or using any other approved techniques.
 - 3. Box and protect from damage existing trees and shrubs to remain on the construction site.
 - 4. Immediately repair all damage to existing trees and shrubs by trimming, cleaning, and painting with antiseptic tree paint.
 - Do not store building materials or perform construction activities closer to existing trees or shrubs than the farthest extension of their limbs.
 - 6. Reduction of Exposure of Unprotected Erodible Soils: Plan and conduct earthwork to minimize the duration of exposure of unprotected soils. Clear areas in reasonably sized increments only as needed to use. Form earthwork to final grade as shown. Immediately protect side slopes and back slopes upon completion of rough grading.
 - Temporary Protection of Disturbed Areas: Construct diversion ditches, benches, and berms to retard and divert runoff from the construction site to protected drainage areas approved under paragraph 208 of the Clean Water Act.
 - 8. Sediment Basins: Trap sediment from construction areas in temporary or permanent sediment basins that accommodate the runoff of a local 10

year storm. After each storm, pump the basins dry and remove the accumulated sediment. Control overflow/drainage with paved weirs or by vertical overflow pipes, draining from the surface.

- Reuse or conserve the collected topsoil sediment as directed by the COR. Topsoil use and requirements as specified in SECTION 31 20 11 EARTHWORK (SHORT FORM).
- Institute effluent quality monitoring programs as required by Federal, State, and local environmental agencies.
- 11. Erosion and Sedimentation Control Devices: The erosion and sediment controls selected and maintained by the Contractor shall be such that water quality standards are not violated as a result of the Contractor's activities. Construct or install all temporary and permanent erosion and sedimentation control features shown. on the Environmental Protection Plan. Maintain temporary erosion and sediment control measures such as berms, dikes, drains, sedimentation basins, grassing, and mulching, until permanent drainage and erosion control facilities are completed and operative.
- 12. Manage borrow areas on and off Government property to minimize erosion and to prevent sediment from entering nearby water courses or lakes.
- 13. Manage and control spoil areas on and off Government property to limit spoil to areas shown on the Environmental Protection Plan and prevent erosion of soil or sediment from entering nearby water courses or lakes.
- Protect adjacent areas from despoilment by temporary excavations and embankments.
- 15. Handle and dispose of solid wastes in such a manner that will prevent contamination of the environment. Place solid wastes (excluding clearing debris) in containers that are emptied on a regular schedule. Transport all solid waste off Government property and dispose of waste in compliance with Federal, State, and local requirements.
- 16. Store chemical waste away from the work areas in corrosion resistant containers and dispose of waste in accordance with Federal, State, and local regulations.
- Handle discarded materials other than those included in the solid waste category as directed by the COR.

- C. Protection of Water Resources: Keep construction activities under surveillance, management, and control to avoid pollution of surface and ground waters and sewer systems. Implement management techniques to control water pollution by the listed construction activities that are included in this contract.
 - Washing and Curing Water: Do not allow wastewater directly derived from construction activities to enter water areas. Collect and place wastewater in retention ponds allowing the suspended material to settle, the pollutants to separate, or the water to evaporate.
 - Control movement of materials and equipment at stream crossings during construction to prevent violation of water pollution control standards of the Federal, State, or local government.
 - 3. Monitor water areas affected by construction.
- D. Protection of Fish and Wildlife Resources: Keep construction activities under surveillance, management, and control to minimize interference with, disturbance of, or damage to fish and wildlife. Prior to beginning construction operations, list species that require specific attention along with measures for their protection.
- E. Protection of Air Resources: Keep construction activities under surveillance, management, and control to minimize pollution of air resources. Burning is not permitted on the job site. Keep activities, equipment, processes, and work operated or performed, in strict accordance with the State of Alabama and Federal emission and performance laws and standards. Maintain ambient air quality standards set by the Environmental Protection Agency, for those construction operations and activities specified.
 - Particulates: Control dust particles, aerosols, and gaseous by-products from all construction activities, processing, and preparation of materials (such as from asphaltic batch plants) at all times, including weekends, holidays, and hours when work is not in progress.
 - 2. Particulates Control: Maintain all excavations, stockpiles, haul roads, permanent and temporary access roads, plant sites, spoil areas, borrow areas, and all other work areas within or outside the project boundaries free from particulates which would cause a hazard or a nuisance. Sprinklering, chemical treatment of an approved type, light bituminous treatment, baghouse, scrubbers, electrostatic precipitators,

or other methods are permitted to control particulates in the work area.

- 3. Hydrocarbons and Carbon Monoxide: Control monoxide emissions from equipment to Federal and State allowable limits.
- 4. Odors: Control odors of construction activities and prevent obnoxious odors from occurring.
- F. Reduction of Noise: Minimize noise using every action possible. Perform noise-producing work in less sensitive hours of the day or week as directed by the COR. Maintain noise-produced work at or below the decibel levels and within the time periods specified.
 - Perform construction activities involving repetitive, high-level impact noise only between 8:00 a.m. and 6:00 p.m. unless otherwise permitted by local ordinance or the COR. Repetitive impact noise on the property shall not exceed the following dB limitations:

	Time Duration of Impact Noise	Sound Level in dB
More	than 12 minutes in any hour	70
Less	than 30 seconds of any hour	85
Less	than three minutes of any hour	80
Less	than 12 minutes of any hour	75

- Provide sound-deadening devices on equipment and take noise abatement measures that are necessary to comply with the requirements of this contract, consisting of, but not limited to, the following:
 - a. Maintain maximum permissible construction equipment noise levels at 15 meter (50 feet) (dBA):

EARTHMOVING	

MATERIALS HANDLING

FRONT LOADERS	75	CONCRETE MIXERS	75
BACKHOES	75	CONCRETE PUMPS	75
DOZERS	75	CRANES	75
TRACTORS	75	DERRICKS IMPACT	75
SCAPERS	80	PILE DRIVERS	95
GRADERS	75	JACK HAMMERS	75
TRUCKS	75	ROCK DRILLS	80
PAVERS, STATIONARY	80	PNEUMATIC TOOLS	80
PUMPS	75		
GENERATORS	75	SAWS	75
COMPRESSORS	75	VIBRATORS	75

- b. Use shields or other physical barriers to restrict noise transmission.
- c. Provide soundproof housings or enclosures for noise-producing machinery.
- d. Use efficient silencers on equipment air intakes.
- e. Use efficient intake and exhaust mufflers on internal combustion engines that are maintained so equipment performs below noise levels specified.
- f. Line hoppers and storage bins with sound deadening material.
- g. Conduct truck loading, unloading, and hauling operations so that noise is kept to a minimum.
- 3. Measure sound level for noise exposure due to the construction at least once every five successive working days while work is being performed above 55 dB(A) noise level. Measure noise exposure at the property line or 15 m (50 feet) from the noise source, whichever is greater. Measure the sound levels on the <u>A</u> weighing network of a General Purpose sound level meter at slow response. To minimize the effect of reflective sound waves at buildings, take measurements at 900 to 1800 mm (three to six feet) in front of any building face. Submit the recorded information to the COR noting any problems and the alternatives for mitigating actions.
- G. Restoration of Damaged Property: If any direct or indirect damage is done to public or private property resulting from any act, omission, neglect, or misconduct, the Contractor shall restore the damaged property to a condition equal to that existing before the damage at no additional cost to the Government. Repair, rebuild, or restore property as directed or make good such damage in an acceptable manner.
- H. Final Clean-up: On completion of project and after removal of all debris, rubbish, and temporary construction, Contractor shall leave the construction area in a clean condition satisfactory to the COR. Cleaning shall include off the station disposal of all items and materials not required to be salvaged, as well as all debris and rubbish resulting from demolition and new work operations.

- - - E N D - - -

SECTION 01 74 19 CONSTRUCTION WASTE MANAGEMENT

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the requirements for the management of non-hazardous building construction and demolition waste.
- B. Waste disposal in landfills shall be minimized to the greatest extent possible. Of the inevitable waste that is generated, as much of the waste material as economically feasible shall be salvaged, recycled or reused.
- C. Contractor shall use all reasonable means to divert construction and demolition waste from landfills and incinerators, and facilitate their salvage and recycle not limited to the following:
 - 1. Waste Management Plan development and implementation.
 - 2. Techniques to minimize waste generation.
 - 3. Sorting and separating of waste materials.
 - 4. Salvage of existing materials and items for reuse or resale.
 - 5. Recycling of materials that cannot be reused or sold.
- D. At a minimum the following waste categories shall be diverted from landfills:
 - 1. Soil.
 - 2. Inserts (e.g., concrete, masonry, and asphalt).
 - 3. Clean dimensional wood and palette wood.
 - 4. Green waste (biodegradable landscaping materials).
 - 5. Engineered wood products (plywood, particle board and I-joists, etc.).
 - 6. Metal products (e.g., steel, wire, beverage containers, copper, etc.).
 - 7. Sheathings
 - 8. Cardboard, paper, and packaging.
 - 9. Bitumen roofing materials.
 - 10. Plastics (e.g., ABS, PVC).
 - 11. Carpet and/or pad.
 - 12. Gypsum board.
 - 13. Insulation.
 - 14. Paint.
 - 15. Fluorescent lamps.

1.2 RELATED WORK

A. Section 02 41 00, DEMOLITION.

B. Section 01 00 00, GENERAL REQUIREMENTS.

1.3 QUALITY ASSURANCE

- A. Contractor shall practice efficient waste management when sizing, cutting and installing building products. Processes shall be employed to ensure the generation of as little waste as possible. Construction /Demolition waste includes products of the following:
 - 1. Excess or unusable construction materials.
 - 2. Packaging used for construction products.
 - 3. Poor planning and/or layout.
 - 4. Construction error.
 - 5. Over ordering.
 - 6. Weather damage.
 - 7. Contamination.
 - 8. Mishandling.
 - 9. Breakage.
- B. Establish and maintain the management of non-hazardous building construction and demolition waste set forth herein. Conduct a site assessment to estimate the types of materials that will be generated by demolition and construction.
- C. Contractor shall develop and implement procedures to recycle construction and demolition waste to a minimum of 25 percent.
- D. Contractor shall be responsible for implementation of any special programs involving rebates or similar incentives related to recycling. Any revenues or savings obtained from salvage or recycling shall accrue to the contractor.
- E. Contractor shall provide all demolition, removal and legal disposal of materials. Contractor shall ensure that facilities used for recycling, reuse and disposal shall be permitted for the intended use to the extent required by local, state, federal regulations.
- F. Contractor shall assign a specific area to facilitate separation of materials for reuse, salvage, recycling, and return. Such areas are to be kept neat and clean and clearly marked in order to avoid contamination or mixing of materials.
- G. Contractor shall provide on-site instructions and supervision of separation, handling, salvaging, recycling, reuse and return methods to be used by all parties during waste generating stages.

H. Record on daily reports any problems in complying with laws, regulations and ordinances with corrective action taken.

1.4 TERMINOLOGY

- A. Class III Landfill: A landfill that accepts non-hazardous resources such as household, commercial and industrial waste resulting from construction, remodeling, repair and demolition operations.
- B. Clean: Untreated and unpainted; uncontaminated with adhesives, oils, solvents, mastics and like products.
- C. Construction and Demolition Waste: Includes all non-hazardous resources resulting from construction, remodeling, alterations, repair and demolition operations.
- D. Dismantle: The process of parting out a building in such a way as to preserve the usefulness of its materials and components.
- E. Disposal: Acceptance of solid wastes at a legally operating facility for the purpose of land filling (includes Class III landfills and inert fills).
- F. Inert Backfill Site: A location, other than inert fill or other disposal facility, to which inert materials are taken for the purpose of filling an excavation, shoring or other soil engineering operation.
- G. Inert Fill: A facility that can legally accept inert waste, such as asphalt and concrete exclusively for the purpose of disposal.
- H. Inert Solids/Inert Waste: Non-liquid solid resources including, but not limited to, soil and concrete that does not contain hazardous waste or soluble pollutants at concentrations in excess of water-quality objectives established by a regional water board, and does not contain significant quantities of decomposable solid resources.
- I. Mixed Debris: Loads that include commingled recyclable and non-recyclable materials generated at the construction site.
- J. Mixed Debris Recycling Facility: A solid resource processing facility that accepts loads of mixed construction and demolition debris for the purpose of recovering re-usable and recyclable materials and disposing nonrecyclable materials.
- K. Permitted Waste Hauler: A company that holds a valid permit to collect and transport solid wastes from individuals or businesses for the purpose of recycling or disposal.
- L. Recycling: The process of sorting, cleansing, treating, and reconstituting materials for the purpose of using the altered form in the manufacture of a

new product. Recycling does not include burning, incinerating or thermally destroying solid waste.

- On-site Recycling Materials that are sorted and processed on site for use in an altered state in the work, i.e. concrete crushed for use as a sub-base in paving.
- Off-site Recycling Materials hauled to a location and used in an altered form in the manufacture of new products.
- M. Recycling Facility: An operation that can legally accept materials for the purpose of processing the materials into an altered form for the manufacture of new products. Depending on the types of materials accepted and operating procedures, a recycling facility may or may not be required to have a solid waste facilities permit or be regulated by the local enforcement agency.
- N. Reuse: Materials that are recovered for use in the same form, on-site or off-site.
- Return: To give back reusable items or unused products to vendors for credit.
- P. Salvage: To remove waste materials from the site for resale or re-use by a third party.
- Q. Source-Separated Materials: Materials that are sorted by type at the site for the purpose of reuse and recycling.
- R. Solid Waste: Materials that have been designated as non-recyclable and are discarded for the purposes of disposal.
- S. Transfer Station: A facility that can legally accept solid waste for the purpose of temporarily storing the materials for re-loading onto other trucks and transporting them to a landfill for disposal, or recovering some materials for re-use or recycling.

1.5 SUBMITTALS

- A. In accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES, furnish the following:
 - Prepare and submit to the COR a written demolition debris management plan. The plan shall include, but not be limited to, the following information:
 - a. Procedures to be used for debris management.
 - b. Techniques to be used to minimize waste generation.
 - c. Analysis of the estimated job site waste to be generated:

- List of each material and quantity to be salvaged, reused, recycled.
- List of each material and quantity proposed to be taken to a landfill.
- B. Detailed description of the Means/Methods to be used for material handling.
 - 1. On site: Material separation, storage, protection where applicable.
 - Off site: Transportation means and destination. Include list of materials.
 - Description of materials to be site-separated and self-hauled to designated facilities.
 - b. Description of mixed materials to be collected by designated waste haulers and removed from the site.
 - The names and locations of mixed debris reuse and recycling facilities or sites.
 - The names and locations of trash disposal landfill facilities or sites.
 - Documentation that the facilities or sites are approved to receive the materials.
- C. Designated Manager responsible for instructing personnel, supervising, documenting and administer over meetings relevant to the Waste Management Plan.
- D. Monthly summary of construction and demolition debris diversion and disposal, quantifying all materials generated at the work site and disposed of or diverted from disposal through recycling.
- E. Target waste diversion rate by material and an overall diversion rate.
- F. Final report documenting the results of implementation of the preconstruction waste management plan.

1.6 APPLICABLE PUBLICATIONS

- A. Publications listed below form a part of this specification to the extent referenced. Publications are referenced by the basic designation only. In the event that criteria requirements conflict, the most stringent requirements shall be met.
 - U.S. Green Building Council (USGBC): LEED Green Building Rating System for New Construction
 - 2. Green Building Initiative (GBI): Green Globes for New Construction 2019

1.7 RECORDS

A. Maintain records to document the quantity of waste generated; the quantity of waste diverted through sale, reuse, or recycling; and the quantity of waste disposed by landfill or incineration. Records shall be kept in accordance with the Green Globes for New Construction 2019 Technical Reference Manual.

PART 2 - PRODUCTS

2.1 MATERIALS

- A. List of each material and quantity to be salvaged, recycled, reused.
- B. List of each material and quantity proposed to be taken to a landfill.
- C. Material tracking data: Receiving parties, dates removed, transportation costs, weight tickets, tipping fees, manifests, invoices, net total costs or savings.

PART 3 - EXECUTION

- A. COLLECTION
 - 1. Provide all necessary containers, bins and storage areas to facilitate effective waste management.
 - Clearly identify containers, bins and storage areas so that recyclable materials are separated from trash and can be transported to respective recycling facility for processing.
 - 3. Hazardous wastes shall be separated, stored, disposed of according to local, state, federal regulations.
- B. DISPOSAL
 - Contractor shall be responsible for transporting and disposing of materials that cannot be delivered to a source-separated or mixed materials recycling facility to a transfer station or disposal facility that can accept the materials in accordance with state and federal regulations.
 - Construction or demolition materials with no practical reuse or that cannot be salvaged or recycled shall be disposed of at a landfill or incinerator.
- C. REPORT

- With each application for progress payment, submit a summary of construction and demolition debris diversion and disposal including beginning and ending dates of period covered.
- 2. Quantify all materials diverted from landfill disposal through salvage or recycling during the period with the receiving parties, dates removed, transportation costs, weight tickets, manifests, invoices. Include the net total costs or savings for each salvaged or recycled material.
- 3. Quantify all materials disposed of during the period with the receiving parties, dates removed, transportation costs, weight tickets, tipping fees, manifests, invoices. Include the net total costs for each disposal.

- - - E N D - - -

SECTION 01 81 13 SUSTAINABLE CONSTRUCTION REQUIREMENTS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This Section describes general requirements and procedures to comply with federal mandates and U.S. Department of Veterans Affairs (VA) policies for sustainable construction.
- B. The Design Professional has selected materials and utilized integrated design processes that achieve the Government's objectives. Contractor is responsible to maintain and support these objectives in developing means and methods for performing work and in proposing product substitutions or changes to specified processes. Obtain approval from Contracting Officer for all changes and substitutions to materials or processes. Proposed changes must meet, or exceed, materials or processes specified.

1.2 RELATED WORK

- A. Section 01 57 19 TEMPORARY ENVIRONMENTAL CONTROLS.
- B. Section 01 74 19 CONSTRUCTION WASTE MANANGEMENT.

1.3 DEFINITIONS

- A. Recycled Content: Recycled content of materials is defined according to Federal Trade Commission Guides for the Use of Environmental Marketing Claims (16 CFR Part 260). Recycled content value of a material assembly is determined by weight. Recycled fraction of assembly is multiplied by cost of assembly to determine recycled content value.
 - "Post-Consumer" material is defined as waste material generated by households or by commercial, industrial, and institutional facilities in their role as end users of the product, which can no longer be used for its intended purpose.
 - 2. "Pre-Consumer" material is defined as material diverted from waste stream during the manufacturing process. Excluded is reutilization of materials such as rework, regrind, or scrap generated in a process and capable of being reclaimed within the same process that generated it.
- B. Biobased Products: Biobased products are derived from plants and other renewable agricultural, marine, and forestry materials and provide an alternative to conventional petroleum derived products. Biobased products include diverse categories such as lubricants, cleaning products, inks, fertilizers, and bioplastics.

- C. Low Pollutant-Emitting Materials: Materials and products which are minimally odorous, irritating, or harmful to comfort and well-being of installers and occupants.
- D. Volatile Organic Compounds (VOC): Chemicals that are emitted as gases from certain solids or liquids. VOCs include a variety of chemicals, some of which may have short- and long-term adverse health effects.

1.4 REFERENCE STANDARDS

- A. Carpet and Rug Institute Green Label Plus program.
- B. U.S. Department of Agriculture BioPreferred program (USDA BioPreferred).
- C. U.S. Environmental Protection Agency Comprehensive Procurement Guidelines (CPG).
- D. U.S. Environmental Protection Agency WaterSense Program (WaterSense).
- E. U.S. Environmental Protection Agency ENERGY STAR Program (ENERGY STAR).
- F. U. S. Department of Energy Federal Energy Management Program (FEMP).
- G. Green Electronic Council EPEAT Program (EPEAT).

1.5 SUBMITTALS

- A. All submittals to be provided by contractor to COR.
- B. Sustainability Action Plan:
 - Submit documentation as required by this section; provide additional copies of typical submittals required under technical sections when sustainable construction requires copies of record submittals.
 - 2. Within 30 days after Preconstruction Meeting provide a narrative plan for complying with requirements stipulated within this section.
 - 3. Sustainability Action Plan must:
 - a. Make reference to sustainable construction submittals defined by this section.
 - b. Address all items listed under PERFORMANCE CRITERIA.
 - c. Indicate individual(s) responsible for implementing the plan.
- C. Low Pollutant-Emitting Materials Tracking Spreadsheet: Within 30 days after Preconstruction Meeting provide a preliminary Low Pollutant-Emitting Materials Tracking Spreadsheet. The Low Pollutant-Emitting Materials Tracking Spreadsheet must be an electronic file and include all materials on Project in categories described under Low Pollutant-Emitting Materials in 01 81 13.
- D. Construction Indoor Air Quality (IAQ) Management Plan:

- Not more than 30 days after Preconstruction Meeting provide a Construction IAQ Management Plan as an electronic file including descriptions of the following:
 - a. Instruction procedures for meeting or exceeding minimum requirements of ANSI/SMACNA 008-2008, Chapter 3, including procedures for HVAC Protection, Source Control, Pathway Interruption, Housekeeping, and Scheduling.
 - b. Instruction procedures for protecting absorptive materials stored on-site or installed from moisture damage.
 - c. Schedule of submission of photographs of on-site construction IAQ management measures such as protection of ducts and on-site stored oil installed absorptive materials.
 - d. Instruction procedures if air handlers must be used during construction, including a description of filtration media to be used at each return air grille.
 - e. Instruction procedure for replacing all air-filtration media immediately prior to occupancy after completion of construction, including a description of filtration media to be used at each air handling or air supply unit.
 - f. Instruction procedures and schedule for implementing building flush-out.
- E. Product Submittals:
 - Recycled Content: Submit product data from manufacturer indicating percentages by weight of post-consumer and pre-consumer recycled content for products having recycled content (excluding MEP systems equipment and components).
 - Biobased Content: Submit product data for products to be installed or used which are included in any of the USDA BioPreferred program's product categories. Data to include percentage of biobased content and source of biobased material.
 - Low Pollutant-Emitting Materials: Submit product data confirming compliance with relevant requirements for all materials on Project in categories described under Low Pollutant-Emitting Materials in 01 81 13.

- 4. For applicable products and equipment, submit product documentation confirming ENERGY STAR label, FEMP certification, WaterSense, and/or EPEAT certification.
- F. Sustainable Construction Progress Reports: Concurrent with each Application for Payment, submit a Sustainable Construction Progress Report to confirm adherence with Sustainability Action Plan.
 - 1. Include narratives of revised strategies for bringing work progress into compliance with plan and product submittal data.
 - 2. Include updated and current Low Pollutant-Emitting Materials Tracking Spreadsheet.
 - 3. Include construction waste tracking, in tons or cubic yards, including waste description, whether diverted or landfilled, hauler, and percent diverted for comingled quantities; and excluding land-clearing debris and soil. Provide haul receipts and documentation of diverted percentages for comingled wastes.
- G. Closeout Submittals: Within 14 days after Substantial Completion provide the following:
 - 1. Final version of Low Pollutant-Emitting Materials Tracking Spreadsheet.
 - Manufacturer's cut sheets and product data highlighting the Minimum Efficiency Reporting Value (MERV) for filtration media installed at return air grilles during construction if permanently installed air handling units are used during construction.
 - Manufacturer's cut sheets and product data highlighting the Minimum Efficiency Reporting Value (MERV) for final filtration media in air handling units.
 - 4. Minimum 18 construction photographs including six photographs taken on three different occasions during construction of ANSI/SMACNA 008-2008, Chapter 3 approaches employed, along with a brief description of each approach, documenting implementation of IAQ management measures, such as protection of ducts and on-site stored or installed absorptive materials.
 - 5. Flush-out Documentation:
 - a. Product data for filtration media used during flush-out.
 - b. Product data for filtration media installed immediately prior to occupancy.
c. Signed statement describing building air flush-out procedures including dates when flush-out was begun and completed and statement that filtration media was replaced after flush-out.

1.6 QUALITY ASSURANCE

- A. Preconstruction Meeting: After award of Contract and prior to commencement of Work, schedule and conduct meeting with COR/Resident Engineer and Architect to discuss the Project Sustainable Action Plan content as it applies to submittals, project delivery, required Construction Indoor Air Quality (IAQ) Management Plan, and other Sustainable Construction Requirements. The purpose of this meeting is to develop a mutual understanding of the Sustainable Construction Requirements and coordination of contractor's management of these requirements with the Contracting Officer and the Construction Quality Manager.
- B. Construction Job Conferences: Status of compliance with Sustainable Construction Requirements of these specifications will be an agenda item at regular job meetings conducted during the course of work at the site.
- D. Publications listed below form a part of this specification to extent referenced. Publications are referenced in text by basic designation only. Comply with applicable provisions and recommendations of the following, except as otherwise shown or specified.
- B. Green Seal Standard GS-11, Paints, 1st Edition, May 20, 1993.
- C. Green Seal Standard GC-03, Anti-Corrosive Paints, 2nd Edition, January 7, 1997.
- D. Green Seal Standard GC-36, Commercial Adhesives, October 19, 2000.
- E. South Coast Air Quality Management District (SCAQMD) Rule 1113, Architectural Coatings, rules in effect on January 1, 2004.
- F. South Coast Air Quality Management District (SCAQMD) Rule 1168, July 1, 2005 and rule amendment date of January 7, 2005.
- G. Sheet Metal and Air Conditioning National Contractors' Association (SMACNA) IAQ Guidelines for Occupied Buildings under Construction, 2nd Edition (ANSI/SMACNA 008-2008), Chapter 3.
- H. California Department of Public Health Standard Method for the Testing and Evaluation of Volatile Organic Chemical Emissions from Indoor Sources

Using Environmental Chambers, Version 1.1, Emission Testing method for California Specification 01350 (CDPH Standard Method V1.1-2010).

- I. Federal Trade Commission Guides for the Use of Environmental Marketing Claims (16 CFR Part 260).
- J. ASHRAE Standard 52.2-2007.

PART 2 - PRODUCTS

2.1 PERFORMANCE CRITERIA

- A. Construction waste diversion from landfill disposal must comprise at least 50 percent of total construction waste, excluding land clearing debris and soil. Alternative daily cover (ADC) does not qualify as material diverted from disposal.
- B. Low Pollutant-Emitting Materials:
 - Adhesives, sealants and sealant primers applied on site within the weatherproofing membrane must comply with VOC limits of SCAQMD Rule 1168:
 - a. Flooring Adhesives and Sealants:
 - 1) Indoor carpet adhesives: 50 g/L.
 - 2) Wood Flooring Adhesive: 100 g/L.
 - 3) Rubber Floor Adhesives: 60 g/L.
 - 4) Subfloor Adhesives: 50 g/L.
 - 5) Ceramic Tile Adhesives and Grout: 65 g/L.
 - 6) Cove Base Adhesives: 50 g/L.
 - 7) Multipurpose Construction Adhesives: 70 g/L.
 - 8) Porous Material (Except Wood) Substrate: 50 g/L.
 - 9) Wood Substrate: 30 g/L.
 - 10) Architectural Non-Porous Sealant Primer: 250 g/L.
 - 11) Architectural Porous Sealant Primer: 775 g/L.
 - 12) Other Sealant Primer: 750 g/L.
 - 13) Structural Wood Member Adhesive: 140 g/L.
 - 14) Sheet-Applied Rubber Lining Operations: 850 g/L.
 - 15) Top and Trim Adhesive: 250 g/L.
 - 16) Architectural Sealant: 250 g/L.
 - 17) Other Sealant: 420 g/L.
 - b. Non-Flooring Adhesives and Sealants:
 - 1) Drywall and Panel Adhesives: 50 g/L.
 - 2) Multipurpose Construction Adhesives: 70 g/L.

- 3) Structural Glazing Adhesives: 100 g/L.
- 4) Metal-to-Metal Substrate Adhesives: 30 g/L.
- 5) Plastic Foam Substrate Adhesive: 50 g/L.
- 6) Porous Material (Except Wood) Substrate Adhesive: 50 g/L.
- 7) Wood Substrate Adhesive: 30 g/L.
- 8) Fiberglass Substrate Adhesive: 80 g/L.
- 9) Architectural Non-Porous Sealant Primer: 250 g/L.
- 10) Architectural Porous Sealant Primer: 775 g/L.
- 11) Other Sealant Primer: 750 g/L.
- 12) PVC Welding Adhesives: 510 g/L.
- 13) CPVC Welding Adhesives: 490 g/L.
- 14) ABS Welding Adhesives: 325 g/L.
- 15) Plastic Cement Welding Adhesives: 250 g/L.
- 16) Adhesive Primer for Plastic: 550 g/L.
- 17) Contact Adhesive: 80 g/L.
- 18) Special Purpose Contact Adhesive: 250 g/L.
- 19) Structural Wood Member Adhesive: 140 g/L.
- 20) Sheet Applied Rubber Lining Operations: 850 g/L.
- 21) Top and Trim Adhesive: 250 g/L.
- 22) Architectural Sealants: 250 g/L.
- 23) Other Sealants: 420 g/L.
- 2. Aerosol adhesives applied on site within the weatherproofing membrane must comply with the following Green Seal GS-36.
 - Aerosol Adhesive, General-Purpose Mist Spray: 65 percent VOCs by weight.
 - b. Aerosol Adhesive, General-Purpose Web Spray: 55 percent VOCs by weight.
 - c. Special-Purpose Aerosol Adhesive (All Types): 70 percent VOCs by weight.
- 3. Paints and coatings applied on site within the weatherproofing membrane must comply with the following criteria:
 - a. VOC content limits for paints and coatings established in Green Seal Standard GS-11.
 - b. VOC content limit for anti-corrosive and anti-rust paints applied to interior ferrous metal substrates of 250 g/L established in Green Seal GC-03.

- c. Clear wood finishes, floor coatings, stains, primers, sealers, and shellacs applied to interior elements must not exceed VOC content limits established in SCAQMD Rule 1113.
- d. Comply with the following VOC content limits:
 - 1) Anti-Corrosive/Antirust Paints: 250 g/L.
 - 2) Clear Wood Finish, Lacquer: 550 g/L.
 - 3) Clear Wood Finish, Sanding Sealer: 350 g/L.
 - 4) Clear Wood Finish, Varnish: 350 g/L.
 - 5) Floor Coating: 100 g/L.
 - 6) Interior Flat Paint, Coating or Primer: 50 g/L.
 - 7) Interior Non-Flat Paint, Coating or Primer: 150 g/L.
 - 8) Sealers and Undercoaters: 200 g/L.
 - 9) Shellac, Clear: 730 g/L.
 - 10) Shellac, Pigmented: 550 g/L.
 - 11) Stain: 250 g/L.
 - 12) Clear Brushing Lacquer: 680 g/L.
 - 13) Concrete Curing Compounds: 350 g/L.
 - 14) Japans/Faux Finishing Coatings: 350 g/L.
 - 15) Magnesite Cement Coatings: 450 g/L.
 - 16) Pigmented Lacquer: 550 g/L.
 - 17) Waterproofing Sealers: 250 g/L.
 - 18) Wood Preservatives: 350 g/L.
 - 19) Low-Solids Coatings: 120 g/L.
- Carpet installed in building interior must comply with one of the following:
 - a. Meet testing and product requirements of the Carpet and Rug Institute Green Label Plus program.
 - b. Maximum VOC concentrations specified in CDPH Standard Method V1.1-2010, using office scenario at the 14 day time point.
- 5. Each non-carpet flooring element installed in building interior which is not inherently non-emitting (stone, ceramic, powder-coated metals, plated or anodized metal, glass, concrete, clay brick, and unfinished or untreated solid wood flooring) must comply with one of the following:
 - a. Meet requirements of the FloorScore standard as shown with testing by an independent third-party.

- b. Maximum VOC concentrations specified in CDPH Standard Method V1.1-2010, using office scenario at 14 day time point.
- 6. Composite wood and agrifiber products used within the weatherproofing membrane must contain no added urea-formaldehyde resins.
- Laminating adhesives used to fabricate on-site and shop-applied composite wood and agrifiber assemblies must not contain added ureaformaldehyde.
- C. Recycled Content:
 - Any products being installed or used that are listed on EPA Comprehensive Procurement Guidelines designated product list must meet or exceed the EPA's recycled content recommendations. The EPA Comprehensive Procurement Guidelines categories include:
 - a. Building insulation.
 - b. Cement and concrete.
 - c. Consolidated and reprocessed latex paint.
 - d. Floor tiles.
 - e. Flowable fill.
 - f. Laminated paperboard.
 - g. Modular threshold ramps.
 - h. Nonpressure pipe.
 - i. Patio blocks.
 - j. Railroad grade crossing surfaces.
 - k. Roofing materials.
 - 1. Shower and restroom dividers/partitions.
 - m. Structural fiberboard.
 - n. Nylon carpet and nylon carpet backing.
 - o. Compost and fertilizer made from recovered organic materials.
 - p. Hydraulic mulch.
 - q. Lawn and garden edging.
 - r. Plastic lumber landscaping timbers and posts.
 - s. Park benches and picnic tables.
 - t. Plastic fencing.
 - u. Playground equipment.
 - v. Playground surfaces.
 - w. Bike racks.

D. Biobased Content:

- Materials and equipment being installed or used that are listed on the USDA BioPreferred program product category list must meet or exceed USDA's minimum biobased content threshold. Refer to individual specification sections for detailed requirements applicable to that section.
 - a. USDA BioPreferred program categories include:
 - 1) Adhesive and Mastic Removers.
 - 2) Carpets.
 - 3) Cleaners.
 - 4) Composite Panels.
 - 5) Corrosion Preventatives.
 - 6) Erosion Control Materials.
 - 7) Dust Suppressants.
 - 8) Fertilizers.
 - 9) Floor Cleaners and Protectors.
 - 10) Floor Coverings (Non-Carpet).
 - 11) Glass Cleaners.
 - 12) Hydraulic Fluids.
 - 13) Industrial Cleaners.
 - 14) Interior Paints and Coatings.
 - 15) Mulch and Compost Materials.
 - 16) Multipurpose Cleaners.
 - 17) Multipurpose Lubricants.
 - 18) Packaging Films.
 - 19) Paint Removers.
 - 20) Plastic Insulating Foam.
 - 21) Pneumatic Equipment Lubricants.
 - 22) Roof Coatings.
 - 23) Wastewater Systems Coatings.
 - 24) Water Tank Coatings.
 - 25) Wood and Concrete Sealers.
 - 26) Wood and Concrete Stains.
- E. Materials, products, and equipment being installed which fall into a category covered by the WaterSense program must be WaterSense-labeled or meet or exceed WaterSense program performance requirements, unless disallowed for infection control reasons.

- 1. WaterSense categories include:
 - a. Bathroom Faucets
 - b. Commercial Toilets
 - c. Irrigation Controllers
 - d. Pre-Rinse Spray Valves
 - e. Residential Toilets
 - f. Showerheads
 - g. Spray Sprinkler Bodies
 - h. Urinals
- F. Materials, products, and equipment being installed which fall into any of the following product categories must be Energy Star-labeled.
 - 1. Applicable Energy Star product categories as of 09/14/2017 include:
 - a. Appliances:
 - 1) Air Purifiers and Cleaners.
 - 2) Clothes Dryers (Residential).
 - 3) Clothes Washers (Commercial & Residential).
 - 4) Dehumidifiers.
 - 5) Dishwashers (Residential).
 - 6) Freezers (Residential).
 - 7) Refrigerators (Residential).
 - b. Electronics and Information Technology:
 - 1) Audio/Video Equipment.
 - 2) Computers.
 - 3) Data Center Storage.
 - 4) Digital Media Player.
 - 5) Enterprise Servers.
 - 6) Imaging Equipment.
 - 7) Monitors.
 - 8) Professional Displays.
 - 9) Set-Top and Cable Boxes.
 - 10) Telephones.
 - 11) Televisions.
 - 12) Uninterruptible Power Supplies.
 - 13) Voice over Internet Protocol (VoIP) Phones.
 - c. Food Service Equipment (Commercial):
 - 1) Dishwashers.

December 29, 2023 Project No: 679-21-102

- 2) Fryers.
- 3) Griddles.
- 4) Hot Food Holding Cabinets.
- 5) Ice Makers.
- 6) Ovens.
- 7) Refrigerators and Freezers.
- 8) Steam Cookers.
- 9) Vending Machines.
- d. Heating and Cooling Equipment:
 - 1) Air-Source Heat Pumps (Residential).
 - 2) Boilers.
 - 3) Ceiling Fans (Residential).
 - 4) Central Air Conditioners (Residential).
 - 5) Ductless Heating and Cooling (Residential).
 - 6) Furnaces (Residential).
 - 7) Water Heaters.
 - 8) Geothermal Heat Pumps (Residential).
 - 9) Light Commercial Heating and Cooling Equipment.
 - 10) Room Air Conditioners (Residential).
 - 11) Ventilation Fans (Residential).
- e. Other:
 - 1) Decorative Light Strings.
 - 2) Electric Vehicle Supply Equipment.
 - 3) Laboratory-Grade Refrigerators and Freezers.
 - 4) Light Bulbs.
 - 5) Light Fixtures.
 - 6) Pool Pumps.
 - 7) Roof Products.
 - 8) Water Coolers.
 - 9) Windows, Doors, and Skylights.
- G. Materials, products, and equipment being installed which fall into any of the following categories must be FEMP-designated. FEMP-designated product categories as of 09/14/2017 include:
 - 1. Boilers (Commercial).
 - 2. Dishwashers (Commercial).
 - 3. Electric Chillers, Air-Cooled (Commercial).

- 4. Electric Chillers, Water-Cooled (Commercial).
- 5. Exterior Lighting.
- 6. Fluorescent Ballasts.
- 7. Fluorescent Lamps, General Service.
- 8. Ice Machines, Water-Cooled.
- 9. Industrial Lighting (High/Low Bay).
- 10. Light Emitting Diode (LED) Luminaires.
- H. Electronic products and equipment being installed which fall into any of the following categories shall be EPEAT registered. Electronic products and equipment covered by EPEAT program as of 09/14/2017 include:
 - 1. Computers.
 - 2. Displays.
 - 3. Imaging Equipment.
 - 4. Televisions.

PART 3 - EXECUTION

3.1 FIELD QUALITY CONTROL

- E. A. Construction Indoor Air Quality Management:
 - During construction, meet or exceed recommended control measures of ANSI/SMACNA 008-2008, Chapter 3.
 - 2. Protect stored on-site and installed absorptive materials from moisture damage.
 - 3. If permanently installed air handlers are used during construction, filtration media with a minimum efficiency reporting value (MERV) of 8 must be used at each return air grille, as determined by ASHRAE Standard 52.2-1999 (with errata but without addenda). Replace all filtration media immediately prior to occupancy.
 - 4. Perform building flush-out as follows:
 - a. After construction ends, prior to occupancy and with interior finishes installed, perform a building flush-out by supplying a total volume of 14000 cu. ft. of outdoor air per sq. ft. of floor area while maintaining an internal temperature of at least 60 degrees Fahrenheit and a relative humidity no higher than 60 percent. OR
 - b. If occupancy is desired prior to flush-out completion, the space may be occupied following delivery of a minimum of 3500 cu. ft. of outdoor air per sq. ft. of floor area to the space. Once a space is

occupied, it must be ventilated at a minimum rate of 0.30 cfm per sq. ft. of outside air or design minimum outside air rate determined until a total of 14000 cu. ft./sq. ft. of outside air has been delivered to the space. During each day of flush-out period, ventilation must begin a minimum of three hours prior to occupancy and continue during occupancy.

----END----

SECTION 02 21 13 SITE SURVEYS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Researching and collecting documents informing surveys.
 - 2. Performing boundary survey, topographic survey, and utility survey.
 - 3. Creating survey drawings.

1.2 APPLICABLE PUBLICATIONS

- A. Comply with references to extent specified in this section.
- B. American Land Title Association and American Congress on Surveying and Mapping (ALTA-ACSM):
 - 1. Accuracy Standards for ALTA-ACSM Land Title Surveys.
- C. Federal Geographic Data Committee (FGDC):
 - 1. STD-007.03-98 Geospatial Positioning Accuracy Standards Part 3: National Standard for Spatial Data Accuracy.
 - 2.STD-007.04-02 Geospatial Positioning Accuracy Standards Part 4: Standards for Architecture, Engineering, Construction (A/E/C) and Facility Management.

1.3 SUBMITTALS

- A. Submittal Procedures: Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Survey Drawings:
 - 1. Prints: Two sets of black line, full size prints of each drawing.
 - 2. Electronic Files: Consistent with computer-aided design (CAD) Standards described at www.cfm.va.gov/til/projReq.asp.

1.4 QUALITY ASSURANCE

- A. Land Surveyor: One of the following:
 - 1. Experienced professional land surveyor licensed in state in which project is located.
 - 2. Experienced professional civil engineer licensed in state in which project is located and authorized to practice land surveying as civil engineer.

PART 2 - PRODUCTS

2.1 ACCESSORIES

- A. Monuments: Iron pin, with driven 16 mm (5/8 inch) diameter, minimum 600 mm (24 inches) long to prevent displacement.
- B. Stakes: Hardwood.
- C. Flagging: Plastic, roll form, highly visible, solid color.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Research public and VA facility records for deeds, maps, monuments, plats, surveys, title certificates or abstracts, rights-of-way, easements, section line, other boundary line locations, and other documents pertaining to project site.
- B. Research public and VA facility utility records for aerial, surface, and subgrade structures and utility service lines and easements.

3.2 PREPARATION

- A. Coordinate with Contracting Officer's Representative for site access.
- B. Coordinate with adjacent property owners when access to adjoining properties is required.
 - 1. Notify Contracting Officer's Representative when access is denied.

3.3 SURVEYS

- A. Perform survey on ground according to
 - 1. Provide topo contours at 2' intervals
- B. Boundary Survey:
 - 1. Locate permanent monuments within and along survey boundary.
 - 2. Set permanent monument at property corners when monument is not found.
 - 3. Temporarily mark monument locations with stake and flagging.
 - 4. Reconcile differences between legal description and survey.
- C. Topographic Survey:
 - Vertical Control: National Geodetic Survey or existing VA Medical Center benchmark.
 - 2. Determine project site contours at maximum 2 foot interval.
 - 3. Determine spot elevations at specified locations.
- D. Utility Survey:
 - Locate piped utilities and utility structures. Identify service type, sizes, depths, and pressures. Establish inverts in and out on gravity sewer manholes.

- 2. Locate fire hydrants.
- 3. Locate wired utilities and utility structures. Identify service type, rated capacities, and elevations above and below grade.
- 4. Identify each utility authority including contact person and phone number.
- E. Locate permanent structures within survey boundary by perpendicular dimension to property lines.
 - 1. Determine structure plan dimensions, heights, and vertical offsets.
 - 2. Determine projections and overhangs beyond structure perimeter at grade.
 - 3. Determine number of stories and primary building materials.
- F. Locate rights-of-way and easements within and adjacent to survey boundary by perpendicular dimension to property line.
 - Locate project site access from rights-of-way by dimension from survey monument. Determine site access width.

3.4 SURVEY DRAWING REQUIREMENTS

- A. Consult Contracting Officer's Representative to confirm required survey scale and drawing size.
 - 1. Drawing Size: Maximum 760 by 1070 mm (30 by 42 inches).
 - 2. Boundary Survey Scale: Maximum 1 to 35 (1 inch equals 30 feet).
 - Enlarged Detail Areas: Scale as required to present dimensional data and survey information clearly. Maintain orientation aligned with smaller scale view.
 - 4. Plan Orientation: North at top of drawing sheet.
- B. Drawing Notations:
 - Land Surveyor: Name, address, telephone number, signature, seal, and registration number.
 - Survey Dates: Date survey was initially completed and subsequent revision dates.
 - 3. Certification: Certify each drawing adjacent to land surveyor's seal:
 - a. "I hereby certify that all information indicated on this drawing was obtained or verified by actual measurements in the field and that every effort has been made to provide complete and accurate information."
 - b. Title, number, and total number of drawings on each drawing.
 - c. Scale in metric and imperial measurement.
 - d. Graphic scale in metric and imperial measurement.
 - e. Graphic symbol and abbreviation legends.

Tuscaloosa VAMC Correct Failing Sanitary Sewer, Water Main, FP Deficiencies 100% Construction Documents Tuscaloosa, AL 35404

- f. North arrow for plan view drawings.
- q. Benchmark locations.
- h. Horizontal and vertical control datum.
- i. Adjacent property owner names.
- j. Zoning classifications.
- k. Building street numbers.
- 4. Evidence of Possession: Indicate character and location of evidence of possession affecting project site. Notation absence signifies no observable evidence of possession.
- C. Vicinity Map: Indicate project site and nearby roadways and intersections.
- D. Record Documents Forming Survey Basis: Indicate titles, source, and recording data of documents relied upon to complete survey.
- E. Legal Description: Recorded title boundaries.
- F. Land Area: Report acres as defined by the boundaries of the legal description of the surveyed premises, including legal description of the land.
 - 1. Accuracy: 0.001 acres
- G. Boundary Lines: Show point of beginning, length and bearing for straight lines, and angle, radius, point of curvature, point of tangency, and length of curved lines.
 - 1. Include bearing basis and data necessary to mathematically close survey.
 - 2. When recorded and measured bearings, angles, and distances differ, indicate both recorded and measured data.
 - a. Indicate when recorded description does not mathematically close survey.
 - 3. Indicate found and installed monuments establishing basis of survey.
 - 4. Contiguity, Gores, and Overlaps: Identify discrepancies within and along survey boundary.
- H. Lots and Parcels: Indicate entire lots and parcels included within and intersected by survey boundary.
- I. Roadways: Indicate names and widths of rights-of-way and roadways within and abutting survey boundary.
 - 1. Indicate changes in rights-of-way lines either completed or proposed.
 - 2. Indicate accesses to roadways.
 - 3. Indicate abandoned roadways.
 - 4. Indicated unopened dedicated roadways.

02 21 13 - 4

- J. Setbacks: Indicate recorded setback and building restriction lines.
- K. Structures and Site Improvements: Indicate buildings, walls, fences, signs, and other visible improvements.
 - Indicate each building dimensioned to property lines and other structures.
 - Indicate exterior dimensions of buildings at ground level. Show area of building footprint and gross floor area of entire building.
 - Indicate maximum measured height of buildings above grade, point of measurement, and number of stories.
 - Indicate spot elevations at building entrances, first floor, service docks, corners, steps, ramps, and grade slabs.
 - 5. Indicate structures and site improvements within 1500 mm (5 feet) of survey boundary.
 - 6. Indicate encroachments on project site, adjoining property, easements, rights-of-way, and setback lines from fire escapes, bay windows, windows and doors opening out, flue pipes, stoops, eaves, cornices, areaways, stoops, other building projections, and site improvements.
 - Identify setback, height, and floor space area restrictions set by applicable zoning and building codes and recorded subdivision maps. Indicate if no restrictions exist.
- L. Easements:
 - 1. Indicate easements evidenced by recorded documents.

a. Indicate when easements cannot be located.

- Indicate observable easements created by roadways, rights-of-ways, water courses, drains, telephone, telegraph, electric and other wiring, water, sewer, oil, gas, and other pipelines within project site and on adjoining properties when potentially affecting project site.
- 3. Indicate observable surface improvements of underground easements.
- M. Pavements and Railroad Tracks:
 - Indicate location, alignment, and dimensions for vehicular and pedestrian pavements and railroad tracks .
 - Indicate pavement encroachments from adjacent properties onto project site and onto adjacent properties from project site.
 a. Dimension encroachments from survey boundary.
 - Indicate roadway and railroad tracks centerlines with true bearings and lengths by 50 feet stationing.

- Describe curves by designating points of curvature and tangency. Include curve data and location of radius and vertex points.
- b. Indicate elevations at station points along roadway centerlines, roadway edges, and top and bottom of curbs.
- c. Indicate elevations at station points along railway tracks.
- 4. Indicate parking areas, parking striping, and total parking spaces.
 - a. Identify accessible, fuel efficient, and electric vehicle parking spaces.
- 5. Indicate curb cuts, driveways, and other accesses to public ways.
- N. Indicate cemetery and burial ground boundaries.
- O. Waterways:
 - Indicate boundaries of ponds, lakes, springs, and rivers bordering on or running through project site. Note date of measurement and that boundary is subject to change due to natural causes.
 - 2. Indicate flood plain location and elevation.
 - 3. Indicate watershed extent affecting project site.
- P. Indicate topographic contours.
- Q. Flood Zone: Indicate applicable flood zone from Federal Flood Insurance Rate Maps, by scaled map location and graphic plotting.
- R. Public and Private Utilities:
 - 1. Indicate information source and operating authority for each utility.
 - 2. Indicate utilities existing on or serving project site.
 - Indicate fire hydrants on project site and within 150 m (500 feet) of survey boundary.
 - Indicate manholes, catch basins, inlets, vaults, and other surface indications of subgrade services.
 - Indicate depths or invert elevations, sizes, materials, and pressures of utility pipes.
 - Indicate wires and cables serving, crossing, and adjacent to project site.
 - 7. Indicate exterior lighting, traffic control facilities, security, and communications systems.
 - Indicate utility poles on project site and within 3 m (10 feet) of survey boundary.
 - 9. Indicate dimensions of cross-wires or overhangs affecting project site.
- S. Observable Evidence:

- 1. Indicate in-progress and recently completed earth moving work, building construction, and building additions.
- Indicate in-progress and recently completed pavement construction and repairs.
- 3. Indicate areas used as solid waste dump, sump, and sanitary landfill.
- T. Trees:
 - Indicate individual trees with minimum 150 mm (6 inches) diameter measured at 400 mm (48 inches) above grade.
 - 2. Indicate wooded area perimeter outline and description of predominant vegetation.

- - - END ----

SECTION 02 41 00 DEMOLITION

PART 1 - GENERAL

1.1 DESCRIPTION:

This section specifies demolition and removal of buildings, portions of buildings, utilities, other structures, and debris from trash dumps shown.

1.2 RELATED WORK:

- A. Demolition and removal of roads, walks, curbs, and on-grade slabs outside buildings to be demolished: Section 31 20 11, EARTH MOVING (SHORT FORM).
- B. Safety Requirements: Section 01 35 26 Safety Requirements Article, ACCIDENT PREVENTION PLAN (APP).
- C. Disconnecting utility services prior to demolition: Section 01 00 00, GENERAL REQUIREMENTS.
- D. Reserved items that are to remain the property of the Government: Section 01 00 00, GENERAL REQUIREMENTS.
- E. Environmental Protection: Section 01 57 19, TEMPORARY ENVIRONMENTAL CONTROLS.
- F. Construction Waste Management: Section 017419 CONSTRUCTION WASTE MANAGEMENT.
- G. Infectious Control: Section 01 35 26, SAFETY REQUIREMENTS, Article 1.12, INFECTION CONTROL.

1.3 PROTECTION:

- A. Perform demolition in such manner as to eliminate hazards to persons and property; to minimize interference with use of adjacent areas, utilities and structures or interruption of use of such utilities; and to provide free passage to and from such adjacent areas of structures. Comply with requirements of GENERAL CONDITIONS Article, ACCIDENT PREVENTION.
- B. Provide safeguards, including warning signs, barricades, temporary fences, warning lights, and other similar items that are required for protection of all personnel during demolition and removal operations. Comply with requirements of Section 01 00 00, GENERAL REQUIREMENTS, Article PROTECTION OF EXISTING VEGETATION, STRUCTURES, EQUIPMENT, UTILITIES, AND IMPROVEMENTS.
- C. Maintain fences, barricades, lights, and other similar items around exposed excavations until such excavations have been completely filled.

02 41 00 - 1

- D. Provide enclosed dust chutes with control gates from each floor to carry debris to truck beds and govern flow of material into truck. Provide overhead bridges of tight board or prefabricated metal construction at dust chutes to protect persons and property from falling debris.
- E. Prevent spread of flying particles and dust. Sprinkle rubbish and debris with water to keep dust to a minimum. Do not use water if it results in hazardous or objectionable conditions such as, but not limited to, ice, flooding, or pollution. Vacuum and dust the work area daily.
- F. In addition to previously listed fire and safety rules to be observed in performance of work, include following:
 - No wall or part of wall shall be permitted to fall outwardly from structures.
 - Maintain at least one stairway in each structure in usable condition to highest remaining floor. Keep stairway free of obstructions and debris until that level of structure has been removed.
 - 3. Wherever a cutting torch or other equipment that might cause a fire is used, provide, and maintain fire extinguishers nearby ready for immediate use. Instruct all possible users in use of fire extinguishers.
 - 4. Keep hydrants clear and accessible at all times. Prohibit debris from accumulating within a radius of 4500 mm (15 feet) of fire hydrants.
- G. Before beginning any demolition work, the Contractor shall survey the site and examine the drawings and specifications to determine the extent of the work. The contractor shall take necessary precautions to avoid damages to existing items to remain in place, to be reused, or to remain the property of the Medical Center any damaged items shall be repaired or replaced as approved by the Resident Engineer. The Contractor shall coordinate the work of this section with all other work and shall construct and maintain shoring, bracing, and supports as required. The Contractor shall ensure that structural elements are not overloaded and shall be responsible for increasing structural supports or adding new supports as may be required as a result of any cutting, removal, or demolition work performed under this contract. Do not overload structural elements. Provide new supports and reinforcement for existing construction weakened by demolition or removal works. Repairs, reinforcement, or structural replacement must have Resident Engineer's approval.

- H. The work shall comply with the requirements of Section 01 57 19, TEMPORARY ENVIRONMENTAL CONTROLS.
- I. The work shall comply with the requirements of Section 01 00 00, GENERAL REQUIREMENTS, Article 1.7 INFECTION PREVENTION MEASURES.

1.4 UTILITY SERVICES:

- A. Demolish and remove outside utility service lines shown to be removed.
- B. Remove abandoned outside utility lines that would interfere with installation of new utility lines and new construction.

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION

3.1 DEMOLITION:

- A. Completely demolish and remove buildings and structures, including all appurtenances related or connected thereto, as noted below:
 - 1. As required for installation of new utility service lines.
 - To full depth within an area defined by hypothetical lines located 1500 mm (5 feet) outside building lines of new structures.
- B. Debris, including brick, concrete, stone, metals, and similar materials shall become property of Contractor and shall be disposed of by him daily, off the Medical Center to avoid accumulation at the demolition site. Materials that cannot be removed daily shall be stored in areas specified by the Resident Engineer. Break up concrete slabs below grade that do not require removal from present location into pieces not exceeding 600 mm (24 inches) square to permit drainage. Contractor shall dispose debris in compliance with applicable federal, state or local permits, rules and/or regulations.
- C. In removing buildings and structures of more than two stories, demolish work story by story starting at highest level and progressing down to third floor level. Demolition of first and second stories may proceed simultaneously.
- D. Remove and legally dispose of all materials, other than earth to remain as part of project work, from any trash dumps shown. Materials removed shall become property of contractor and shall be disposed of in compliance with applicable federal, state, or local permits, rules and/or regulations. All materials in the indicated trash dump areas, including above surrounding grade and extending to a depth of 1500mm (5feet) below surrounding grade, shall be included as part of the lump sum compensation for the work of

this section. Materials that are located beneath the surface of the surrounding ground more than 1500 mm (5 feet), or materials that are discovered to be hazardous, shall be handled as unforeseen. The removal of hazardous material shall be referred to Hazardous Materials specifications.

E. Remove existing utilities as indicated or uncovered by work and terminate in a manner conforming to the nationally recognized code covering the specific utility and approved by the Resident Engineer. When Utility lines are encountered that are not indicated on the drawings, the Resident Engineer shall be notified prior to further work in that area.

3.2 CLEAN-UP:

On completion of work of this section and after removal of all debris, leave site in clean condition satisfactory to Resident Engineer. Clean-up shall include off the Medical Center disposal of all items and materials not required to remain property of the Government as well as all debris and rubbish resulting from demolition operations.

- - - E N D - - -

SECTION 03 30 53 (SHORT FORM) CAST-IN-PLACE CONCRETE

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Cast-in-place structural concrete.
 - 2. Slab on grade infill.
 - 3. Suspended slab infill on metal deck.
 - 4. Foundation wall infill.
 - 5. Concrete for metal pan stair fill.
 - 6. Footings.
 - 7. Equipment pads.
 - 8. Preparation of existing surfaces to receive concrete.
 - 9. Preparation of existing surface to received concrete topping.

1.2 RELATED WORK

- A. Section 01 45 29, TESTING LABORATORY SERVICES: Materials Testing and Inspection During Construction.
- B. Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS
- C. Section 32 05 23, CEMENT AND CONCRETE FOR EXTERIOR IMPROVEMENTS: Concrete Roads, Walks, and Similar Exterior Site Work.

1.3 APPLICABLE PUBLICATIONS

- A. Comply with references to extent specified in this Section.
- B. American Concrete Institute (ACI):
 - 117-10(R2015).....Specification for Tolerances for Concrete

Construction and Materials and Commentary

- 211.1-91(R2009).....Standard Practice for Selecting Proportions for Normal, Heavyweight, and Mass Concrete.
- 211.2-98(R2004).....Standard Practice for Selecting Proportions for Structural Lightweight Concrete.
- 301/301M-16.....Specifications for Structural Concrete.
- 305.1-14Hot Weather Concreting.

306.1-90(R2002).....Cold Weather Concreting.

318/318M-19.....Building Code Requirements for Structural Concrete and Commentary

347R-14 -Guide to Formwork for Concrete.

SP-66-04-....ACI Detailing Manual.

С.	ASTM International (ASTM):
	A615/A615M-20Standard Specification for Deformed and Plain
	Carbon Steel Bars for Concrete Reinforcement
	A996/A996M-16Standard Specification for Rail Steel and Axle
	Steel Deformed Bars for Concrete Reinforcement
	A1064/A1064M-18aStandard Specification for Carbon-Steel Wire and
	Welded Wire Reinforcement, Plain and Deformed, for
	Concrete
	C33/C33M-18Standard Specification for Concrete Aggregates.
	C39/C39M-20Standard Test Method for Compressive Strength of
	Cylindrical Concrete Specimens.
	C94/C94M-20Standard Specification for Ready-Mixed Concrete.
	C143/C143M-20Standard Test Method for Slump of Hydraulic Cement
	Concrete.
	C150/C150M-20Standard Specification for Portland Cement.
	C171-16Standard Specification for Sheet Materials for
	Curing Concrete.
	C192/C192M-19Standard practice for Making and Curing Concrete
	Test Specimens in the Laboratory.
	C219-20a Standard Terminology Relating to Hydraulic and
	Other Inorganic Cements.
	C260/C260M-10a(2016)Standard Specification for Air-Entraining
	Admixtures for Concrete.
	C330/C330M-17aStandard Specification for Lightweight Aggregates
	for Structural Concrete.
	C494/C494M-19Standard Specification for Chemical Admixtures for
	Concrete.
	C618-19 Standard Specification for Coal Fly Ash and Raw or
	Calcined Natural Pozzolan for Use in Concrete.
	C881/C881M-20Standard Specification for Epoxy-Resin-Base
	Bonding Systems for Concrete.
	C989/C989M-18aStandard Specification for Slag Cement for Use in
	Concrete and Mortars.
	C1240-20Standard Specification for Silica Fume Used in
	Cementitious Mixtures.
	D1751-18 Standard Specification for Preformed Expansion
	Joint Fillers for Concrete Paving and Structural

Construction (Non-extruding and Resilient Bituminous Types).

E1155-20.....Determining FF Floor Flatness and FL Floor Levelness Numbers.

E1745-17Standard Specification for Water Vapor Retarders Used in Contact with Soil or Granular Fill under Concrete Slabs.

D. International Concrete Repair Institute: 310.2R-2013 -.....Selecting and Specifying Concrete Surface Preparation for Sealers, Coatings, Polymer Overlays, and Concrete Repair.

1.4 SUBMITTALS

- A. Submittal Procedures: Refer to Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. All items indicated below are required submittals requiring Contracting Officer's Representative (COR) review and approval.
- B. Submittal Drawings:
 - Submit large scale drawings of reinforcing steel, including all reinforcing bend diagrams and reinforcing details, to the COR for review and approval.
- C. Manufacturer's Literature and Data:
 - 1. Concrete Mix Design.
 - 2. Air-entraining admixture, chemical admixtures, and curing compounds.
 - 3. Indicate manufacturer's recommendation for each application.
- D. Sustainable Construction Submittals:
 - Recycled Content: Identify post-consumer and pre-consumer recycled content percentage by weight.
- E. Certificates: Certify products comply with specifications.
 - 1. Each ready mix concrete batch delivered to site.

1.5 DELIVERY

A. Deliver each ready-mixed concrete batch with mix certification in duplicate according to ASTM International (ASTM) C94/C94M.

1.6 WARRANTY

A. Construction Warranty: See the contract documents."

PART 2 - PRODUCTS

2.1 MATERIALS

- A. Portland Cement: ASTM C150/C150M, Type I or II.
- B. Pozzolans:
 - Fly Ash: ASTM International (ASTM) C618, Class C or F including supplementary optional physical requirements. Pozzolans shall not exceed 25 percent of total cementitious materials by weight.
 - 2. Slag: ASTM International (ASTM) C989/C989M; Grade 80,
 - 3. Silica Fume: ASTM International (ASTM) C1240.
- C. Coarse Aggregate: ASTM International (ASTM) C33/C33M.
 - 1. Size 467 for footings and walls over 300 mm (12 inches) thick.
 - 2. Size 7 for coarse aggregate for applied topping and metal pan stair fill.
 - 3. Size 67 for other applications.
- D. Fine Aggregate: ASTM International (ASTM) C33/C33M.
- E. Lightweight Aggregate for Structural Concrete: ASTM International(ASTM) C330/C330M, Table 1.
- F. Mixing Water: Fresh, clean, and potable.
- G. Air-Entraining Admixture: ASTM International (ASTM) C260/C260M.
- H. Chemical Admixtures: ASTM International (ASTM) C494/C494M.
- I. Vapor Barrier: ASTM International(ASTM) E1745, Class A with a minimum puncture resistance of 2200 g (3000 pounds); minimum 0.38 mm (15 mil) thick.
- J. Reinforcing Steel: ASTM International(ASTM) A615/A615M or ASTM International(ASTM) A996/A996M, deformed. See Structural Drawings for grade.
- K. Forms: Wood, plywood, metal, or other materials, approved by Contracting Officer, of grade or type suitable to obtain type of finish specified.
 - Plywood: Exterior grade, free of defects and patches on contact surface.
 - 2. Lumber: Sound, grade-marked, S4S stress graded softwood.
 - 3. Form coating: As recommended by Contractor.
- L. Expansion Joint Filler: ASTM International (ASTM) D1751.
- M. Sheet Materials for Curing Concrete: ASTM International (ASTM) C171.

03 30 53 - 4

- N. Abrasive Aggregates: Aluminum oxide grains or emery grits.
- O. Liquid Densifier/Sealer: 100 percent active colorless aqueous siliconate solution.
- P. Grout, Non-Shrinking: Premixed ferrous or non-ferrous. Grout to show no settlement or vertical drying shrinkage at 3 days. Compressive strength for grout, at least 18 MPa (2500 psi) at 3 days and 35 MPa (5000 psi) at 28 days.

2.2 ACCESSORIES

- A. Bonding Agent: ASTM International (ASTM) C 1059/C 1059M, Type II.
- B. Structural Adhesive: ASTM International (ASTM) C881, 2-component material suitable for use on dry or damp surfaces. Provide material Type, Grade, and Class to suit Project requirements.
- C. Water Stops: Rubber base with self-healing properties. Expanding clay based products is not acceptable.
- D. Weeps: Geotextile type as recommended by Contractor and approved by the COR

2.3 CONCRETE MIXES

- A. Design concrete mixes according to ASTM International (ASTM) C94/C94M, Option C.
- B. Compressive strength at 28 days: minimum 25 MPa (3,000 psi)
- C. Submit mix design and results of compression tests to the Contracting Officer for his evaluation. Identify all materials, including admixtures, making-up the concrete.
- D. Maximum Slump for Vibrated Concrete: 100 mm (4 inches) tested according to ASTM International (ASTM) C143.

TABLE I - CEMENT AND WATER FACTORS FOR CONCRETE						
Concrete: Strength	Non-Air-Entrained		Air-Entrained			
Min. 28 Day Comp.	Min. Cement	Max. Water	Min. Cement	Max. Water		
Str.	kg/cu. m	Cement Ratio	kg/cu. m	Cement Ratio		
MPa (psi)	(lbs./cu.		(lbs./cu.			
	yd.)		yd.)			
35 (5000)1,3	375 (630)	0.45	385 (650)	0.40		
30 (4000)1,3	325 (550)	0.55	340 (570)	0.50		
25 (3000)1,3	280 (470)	0.65	290 (490)	0.55		
25 (3000)1,2	300 (500)	See 4 Below	310 (520)	See 4 Below		

E. Cement and Water Factor (See Table I):

TABLE I - CEMENT AND WATER FACTORS FOR CONCRETE						
Concrete: Strength	Non-Air-Entrained		Air-Entrained			
Min. 28 Day Comp. Str. MPa (psi)	Min. Cement kg/cu. m (lbs./cu.	Max. Water Cement Ratio	Min. Cement kg/cu. m (lbs./cu.	Max. Water Cement Ratio		
	yd.)		yd.)			
Notes:						
 If trial mixes are used, achieve a compressive strength 8.3 MPa (1 200 psi) in excess of f'c. For concrete strengths greater than 35 MPa (5,000 psi), achieve a compressive strength 9.7 MPa (1,400 psi) in excess of f'c. Lightweight Structural Concrete: Pump mixes may require higher cement 						

values as specified in ACI 318/318M.3. For Concrete Exposed to High Sulfate Content Soils: Maximum water cement ratio is 0.44.4. Laboratory Determined according to ACI 211.1 for normal weight concrete or

ACI 211.2 for lightweight structural concrete.

F. Air-entrainment conforming with the following for air content table:

TABLE II - TOTAL AIR CONTENT FOR VARIOUS SIZES OF COARSE AGGREGATES			
Nominal Maximum Size of	Total Air Content, percent		
Coarse Aggregate			
10 mm (3/8 inches)	6 Moderate exposure; 7.5 severe exposure		
13 mm (1/2 inches)	5.5 Moderate exposure; 7 severe exposure		
19 mm (3/4 inches)	5 Moderate exposure; 6 severe exposure		
25 mm (1 inches)	4.5 Moderate exposure; 6 severe exposure		
40 mm (1 1/2 inches)	4.5 Moderate exposure; 5.5 severe exposure		

2.4 BATCHING AND MIXING

- A. Store, batch, and mix materials according to ASTM C94/C94M.
 - Job-Mixed: Batch mix concrete in stationary mixers as specified in ASTM International(ASTM) C94/C94M.
 - Ready-Mixed Concrete: Comply with ASTM International (ASTM) C94/C94M, except use of non-agitating equipment for transporting concrete to Site is not acceptable.
 - 3. EXECUTION Mixing Structural Lightweight Concrete: Charge mixer with 2/3 of total mixing water and total aggregate for each batch. Mix ingredients minimum 30 seconds in stationary mixer or minimum 10

revolutions at mixing speed in truck mixer. Add remaining mixing water and other ingredients and continue mixing. Above procedure may be modified as recommended by aggregate producer.

4. When aggregate producer's instructions deviate from specifications, submit proposed resolution for Contracting Officer's Representative consideration.

PART 3 - EXECUTION

3.1 FORMWORK

- A. Installation: Conform to ACI 347. Construct forms to obtain concrete of the shapes, dimensions and profiles indicated, with tight joints.
- B. Design and construct forms to prevent bowing-out of forms between supports and to be removable without prying against or otherwise damaging fresh concrete.
- C. When patching formed concrete, seal form edges against existing surface to prevent leakage; set forms so that patch is flush with adjacent surfaces.
- D. Treating and Wetting: Treat or wet concrete contact surfaces:
 - 1. Coat plywood and lumber forms with non-staining form sealer.
 - 2. Wet wood forms thoroughly when they are not treated with form release agent.
 - 3. Prevent water from accumulating and remaining within forms.
 - 4. Clean and coat removable metal forms with light form oil before reinforcement is placed.
 - 5. In hot weather, cool metal forms by thoroughly wetting with water just before placing concrete.
 - 6. Prevent water from accumulating and remaining within forms.
- E. Inserts, Sleeves, and Similar Items: Install flashing reglets, masonry ties, anchors, inserts, wires, hangers, sleeves, boxes for floor hinges, and other cast-in items specified in other Sections. Place where indicated, square, flush and secured to formwork.
- F. Construction Tolerances General: Install and maintain concrete formwork to assure completion of work within specified tolerances.
- G. Adjust or replace completed work exceeding specified tolerances before placing concrete.

3.2 REINFORCEMENT

- A. Install concrete reinforcement according to ACI 318 and ACI SP-66.
- B. Support and securely tie reinforcing steel to prevent displacement during placing of concrete.

C. Drilling for Dowels in Existing Concrete: Use sharp bits, drill hole slightly oversize, fill with epoxy grout, inset the dowel, and remove excess epoxy.

3.3 VAPOR BARRIER

- A. Except where membrane waterproofing is required, place interior concrete slabs on a continuous vapor barrier.
- B. Lap joints 150 mm (6 inches) and seal with a compatible pressure-sensitive tape.
- C. Patch punctures and tears.

3.4 PLACING CONCRETE

- A. Remove water from excavations before concrete is placed. Remove hardened concrete, debris and other foreign materials from interior forms, and from inside of mixing and conveying equipment. Obtain approval from Contracting Officer's Representative before placing concrete.
- B. Install screeds at required elevations for concrete slabs.
- C. Roughen and clean free from laitance, foreign matter, and loose particles before placing new concrete on existing concrete.
 - Blow-out areas with compressed air and immediately coat contact areas with adhesive in compliance with manufacturer's instructions.
- D. Place structural concrete according to ACI 301 and ACI 318.
- E. Convey concrete from mixer to final place of deposit by method that will prevent segregation or loss of ingredients. Do not deposit, in Work, concrete that has attained its initial set or has contained its water or cement more than 1 1/2 hours. Do not allow concrete to drop freely more than 1500 mm (5 feet) in unexposed work nor more than 900 mm (3 feet) in exposed work.
- F. Place and consolidate concrete in horizontal layers not exceeding 300 mm (12 inches) in thickness. Consolidate concrete by spading, rodding, and mechanical vibrator. Do not secure vibrator to forms or reinforcement. Continuously vibrate during placement of concrete.
- G. Concrete Fill in Stair Tread and Landing Pans: Coat steel with bonding agent and fill pans with concrete. Reinforce with 2 inch by 2 inch by 1.6 mm (0.06 inch) welded wire mesh at midpoint.
- H. Hot Weather Concrete Placement: As recommended by ACI 305.1 to prevent adversely affecting properties and serviceability of hardened concrete.

- I. Cold Weather Concrete Placement: As recommended by ACI 306.1, to prevent freezing of thin sections less than 300 mm (12 inches) and to permit concrete to gain strength properly.
 - Do not use calcium chloride without written approval from Contracting Officer's Representative.

3.5 TOLERANCES

- A. Slab on Grade Finish Tolerance: Comply with ACI 117, FF-number and FL-number method.
 - 1. Paragraph 4.8.3, Class A 3 mm (1/8 inches) for offset in form-work.
 - 2. Table R4.8.4, "Flat" 6 mm (1/4 inch) in 3 m (10 feet) for slabs.

3.6 PROTECTION AND CURING

- A. Protect exposed surfaces of concrete from premature drying, wash by rain or running water, wind, mechanical damage, and excessive hot or cold temperatures.
- B. Curing Methods: Cure concrete with curing compound using wet method with sheets.
- C. Formed Concrete Curing: Wet the tops and exposed portions of formed concrete and keep moist until forms are removed.
 - 1. If forms are removed before 14 days after concrete is cast, install sheet curing materials as specified above.
- D. Concrete Flatwork Curing:
 - 1. Install sheet materials according to the manufacturer's instructions.
 - a. When manufacturer's instructions deviate from specifications, submit proposed resolution for Contracting Officer's Representative consideration.

3.7 FORM REMOVAL

- A. Maintain forms in place until concrete is self-supporting, with construction operation loads.
- B. Remove fins, laitance, and loose material from concrete surfaces when forms are removed. Repair honeycombs, rock pockets, sand runs, spalls, or otherwise damaged surfaces by patching with the same mix as concrete minus the coarse aggregates.
- C. Finish to match adjacent surfaces.

3.8 FINISHES

- A. Vertical and Overhead Surface Finishes:
 - Surfaces Concealed in Completed Construction: As-cast; no additional finishing required.

03 30 53 - 9

- Surfaces Exposed in Unfinished Areas: As-cast; no additional finishing required.
 - a. Mechanical rooms.
 - b. Electrical rooms.
- 3. Surfaces Exposed to View Scheduled for Paint Finish: Remove fins, burrs and similar projections by mechanical means approved by Contracting Officer's Representative flush with adjacent surface. Lightly rub with fine abrasive stone or hone. Use ample amount of water during rubbing without working up a lather of mortar or changing texture of concrete.
- 4. Surfaces Exposed to View in Finished Areas: Grout finish, unless otherwise shown, for uniform color and smooth finish treated.
 - a. Remove laitance, fins and burrs.
 - b. Scrub concrete with wire brushes. Clean stained concrete surfaces with hone or stone.
 - c. Apply grout composed of 1 part Portland cement and 1 part clean, fine sand (smaller than 600 micro-m (No. 30) sieve). Work grout into surface of concrete with cork floats or fiber brushes until pits and honeycomb are filled.
 - d. After grout has hardened, but is still plastic, remove surplus grout with sponge rubber float and by rubbing with clean burlap.
 - e. In hot, dry weather fog spray surfaces with water to keep grout wet during setting period. Complete finished areas in same day. Confine limits of finished areas to natural breaks in wall surface. Do not leave grout on concrete surface overnight.
- B. Slab Finishes:
 - Allow bleed water to evaporate before surface is finished. Do not sprinkle dry cement on surface to absorb water.
 - Scratch Finish: Rake or wire broom after partial setting slab surfaces to received bonded applied cementitious application, within 2 hours after placing, to roughen surface and provide permanent bond between base slab and applied cementitious materials.
 - Float Finish: Interior and exterior ramps, interior stair treads, and platforms, both equipment pads, and slabs to receive non-cementitious materials.
 - a. Screen and float to smooth dense finish.
 - b. After first floating, while surface is still soft, check surfaces for alignment using straightedge or template. Correct high spots by

cutting down with trowel or similar tool. Correct low spots by filling in with material same composition as floor finish. Remove any surface projections on floated finish by rubbing or dry grinding. Refloat slab to uniform sandy texture.

- 4. Steel Trowel Finish: Applied toppings, concrete surfaces to receive resilient floor covering or carpet, future floor roof and other monolithic concrete floor slabs exposed to view without other finish indicated or specified.
 - a. Delay final steel troweling to secure smooth, dense surface, usually when surface can no longer be dented by fingers. During final troweling, tilt steel trowel at slight angle and exert heavy pressure on trowel to compact cement paste and form dense, smooth surface.
 - b. Finished surface: Free from trowel marks. Uniform in texture and appearance.
- 5. Broom Finish: Finish exterior slabs, ramps, and stair treads with bristle brush moistened with clear water after surfaces have been floated.
- 6. Finished Slab Flatness (FF) and Levelness (FL):
 - a. Slab on Grade: Specified overall value FF 25/FL 20. Minimum local value FF 17/FL 15.
 - b. Test flatness and levelness according to ASTM E1155.

3.9 SURFACE TREATMENTS

- A. Mix and apply the following surface treatments according to manufacturer's instructions.
 - When manufacturer's instructions deviate from specifications, submit proposed resolution for Contracting Officer's Representative consideration.
- B. Liquid Densifier/Sealer: Use for exposed concrete floors and concrete floors to receive carpeting except those specified to receive non-slip finish.
- C. Slip Resistant Finish:
 - Except where safety nosing and tread coverings are shown, apply abrasive aggregate to treads and platforms of concrete steps and stairs, and to surfaces of exterior concrete ramps and platforms.
 - a. Broadcast aggregate uniformly over concrete surface. Trowel concrete surface to smooth dense finish. After curing, rub treated surface

with abrasive brick and water sufficiently to slightly expose abrasive aggregate.

3.10 APPLIED TOPPING

- A. Install concrete topping with thickness and strength shown with only enough water to ensure stiff, workable, plastic mix.
- B. Continuously place applied topping until entire area is complete, struck off with straightedge, compact by rolling or tamping, float and steel trowel to hard smooth finish.

3.11 RESURFACING FLOORS

- A. Remove existing flooring by abrasive blasting or grinding, in areas to receive resurfacing, to expose existing structural slab. Achieve a surface profile of 2 to 4 according to ICRI 310.2R for the condition found at Site.
- B. Prepare exposed structural slab surface by cleaning, wetting, and applying adhesive according to manufacturer's instructions as specified in the flooring section.

3.12 FOUNDATION WALL INFILL

- A. Install air-entrained concrete at foundation wall infill, as shown on the drawings.
- B. Install expansion and contraction joints, waterstops, weep holes, reinforcement and railing sleeves, as indicated on the drawings.
- C. Finish exposed surfaces to match adjacent concrete surfaces, new or existing.
- D. Place porous backfill, as indicated on Drawings.

- - END - -

SECTION 21 30 13 ELECTRIC-DRIVEN, FIRE PUMPS

PART 1 - GENERAL

1.1 DESCRIPTION

A. Installation of a new fire pump system with bypass and with an automatic transfer switch in accordance with NFPA 20 and NFPA 70.

1.2 RELATED WORK

A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.

1.3 DESIGN CRITERIA

A. The design, materials, equipment, installation, inspection, and testing of the fire pump shall be in accordance with the required provisions of NFPA 20 and NFPA 70.

1.4 SUBMITTALS

A. Submit as one package in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. Prepare detailed working drawings that are signed by a NICET Level III or Level IV Sprinkler Technician or stamped by a Registered Professional Engineer licensed in the field of Fire Protection Engineering. As Government review is for technical adequacy only, the installer remains responsible for correcting any conflicts with other trades and building construction that arise during installation. Partial submittals will not be accepted. Material submittals shall be approved prior to the purchase or delivery to the job site. Suitably bind submittals in notebooks or binders and provide an index referencing the appropriate specification section. In addition to the hard copies, provide submittal items in Paragraphs 1.4 (A) 1 through 1.4 (A) 5 electronically in pdf format on a compact disc or as directed by the Contracting Officer's Representative (COR). Submittals shall include the following:

1. Qualifications:

- a. Provide a copy of the installing contractors fire sprinkler and state contractors license.
- b. Provide a copy of the NICET certification for the NICET Level III or Level IV Sprinkler Technician who prepared and signed the detailed working drawings unless the drawings are stamped by a Registered Professional Engineer licensed in the field of Fire Protection Engineering.
- c. Provide documentation showing that the installer has been actively and successfully engaged in the installation of commercial automatic fire pump systems for the past 10 years.

- 2. Drawings: Submit detailed 1/8 inch (1:100) scale (minimum) working drawings conforming to NFPA 20. Provide drawings showing pump room configuration. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection. Provide wiring diagrams for connections to power, signal, and control wiring. Drawings shall include graphical scales that allow the user to determine lengths when the drawings are reduced in area.
- 3. Manufacturers Data Sheets: Provide data sheets for all materials and equipment proposed for use on the system. Include listing information and installation instructions in data sheets. Where data sheets describe items in addition to those proposed to be used for the system, clearly identify the proposed items on the sheet. Data sheets shall be provided for the following:
 - a. Pipe and fittings
 - b. Valves
 - c. Pressure Gauges
 - d. Pipe Hangers and Supports
 - e. Switches
 - f. Fire Pump
 - g. Jockey Pump
 - h. Jockey Pump Controller
 - i. Test Header
 - j. Fire Pump Controller and Automatic Transfer Switch
 - k. Certified Pump Curve
 - 1. Electric Motor
 - m. Flow Meter
- 5. Valve Charts: Provide a valve chart that identifies the location of each control valve. Coordinate nomenclature and identification of control valves with COR. Where existing nomenclature does not exist, the chart shall include no less than the following: Tag ID No., Valve Size, Service (control valve, test header valve, etc.), and Location.
- 6. Factory Authorization of fire pump test representative: Two weeks prior to final inspection and testing, provide a copy of the necessary factory authorizations of the representative to be present at the acceptance testing. Authorizations shall include manufacturer's representative for

the fire pump, the fire pump controller and transfer switch in accordance with NFPA 20 requirements.

- 7. Final Document Submittals: Provide as-built drawings, testing and maintenance instructions in accordance with the requirements in Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. Submittals shall include the following:
 - a. A complete set of as-built drawings showing the installed system with the specific interconnections between the system switches and the fire alarm equipment. Provide a complete set in the formats as follows. Submit items 2 and 3 below on a compact disc or as directed by the COR.
 - 1) One full size (or size as directed by the COR printed copy).
 - 2) One complete set in electronic pdf format.
 - 3) One complete set in AutoCAD format or a format as directed by the COR.
 - b. Centrifugal Fire Pump Acceptance Test Form and Certificates: Upon completion of the fire pump system, including testing and flushing, provide a copy of a completed Centrifugal Fire Pump Acceptance Test Form and all Contractor's Material and Test Certificates as indicated in NFPA 20. The graph included on the Centrifugal Fire Pump Acceptance Test Form shall be annotated to show 1) the water supply available, 2) the manufacturer's certified pump curve, 3) the acceptance test curve, and 4) a curve showing the water supply and acceptance test curve combined.
 - c. Operating and Maintenance Manuals that include step-by-step procedures required for system startup, operation, shutdown, and routine maintenance and testing. The manuals shall include the manufacturer's name, model number, parts list, and tools that should be kept in stock by the owner for routine maintenance, including the name of a local supplier, simplified wiring and controls diagrams, troubleshooting guide, and recommended service organization, including address and telephone number, for each item of equipment.
 - d. One paper copy of the Centrifugal Fire Pump Acceptance Test Form, including the graph identified in 7(b) above, the Contractor's Material and Test Certificates and the Operating and Maintenance Manuals above shall be provided in a binder. In addition, these
materials shall be provided in pdf format on a compact disc or as directed by the COR.

e. Provide one additional copy of the Operating and Maintenance Manual covering the system in a flexible protective cover and mount in an accessible location adjacent to the fire pump controller.

1.5 QUALITY ASSURANCE

- A. Installer Reliability: The installer shall possess a valid State of AL fire sprinkler and contractor's license. The installer shall have been actively and successfully engaged in the installation of commercial automatic fire pumps for the past ten years.
- B. Materials and Equipment: All equipment and devices shall be of a make and type listed by UL or approved by FM, or other nationally recognized testing laboratory for the specific purpose for which it is used. All materials, devices, and equipment shall be approved by the VA. All materials and equipment shall be free from defect. All materials and equipment shall be new unless specifically indicated otherwise on the contract drawings.

1.6 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. National Fire Protection Association (NFPA):

13-2018 (AMD 2020) Installation of Sprinkler Systems 20-2018 (AMD 2018) Installation of Centrifugal Fire Pumps 70-2020(2020e)National Electrical Code 101-2021Life Safety Code 170-2021 Fire Safety Symbols

- C. Underwriters Laboratories, Inc. (UL): Fire Protection Equipment Directory
- D. Factory Mutual Engineering Corporation (FM): Approval Guide
- E. National Electrical Manufacturers Association: 250-2020..... Enclosures for Electrical Equipment

PART 2 PRODUCTS

2.1 GENERAL

Fire pump systems shall be in accordance with NFPA 20.

2.2 PIPING & FITTINGS

- A. General:
 - 1. Piping and fittings for the fire pump systems shall be in accordance with NFPA 20.
- B. Piping:
 - 1. Piping Sizes 2 ½ inches (65 mm) through 6 inches (150 mm) shall be black steel Schedule 40 piping. Steel pipe shall be joined by means of flanges welded to the pipe or mechanical grooved joints only.
 - 2. Piping Sizes 8 inches (200 mm) and larger shall be black steel Schedule 30. Steel pipe shall be joined by means of flanges welded to the pipe or mechanical grooved joints only.
- C. Fittings:
 - 1. Fittings, mechanical couplings, and rubber gaskets shall be of the same manufacturer.

2.3 VALVES

- A. General:
 - 1. Valves shall be in accordance with NFPA 20.
- B. Control Valves:
 - 1. Outside Screw & Yoke Valves (OS&Y)
 - a. The OS&Y valve shall be of cast iron construction.
 - 2. Butterfly Valves
 - a. Butterfly valves shall not be installed in any location on the suction side of the fire pump.
 - b. The butterfly valve shall be of cast iron construction.
 - c. The valve tamper switch is permitted to be integral to the butterfly valve.
- C. Automatic Air-Relief Valve
 - 1. The automatic air-relief valve shall be discharged to the atmosphere.
- D. Circulation Relief Valve
 - 1. The circulation relief valve shall be of brass construction and be spring loaded.
 - 2. The circulation relief valve shall be adjustable.
 - 3. The circulation relief valve shall discharge to the atmosphere and not be recirculated to the suction side of the fire pump.
- E. Check Valve:
 - 1. Shall be of the swing type with a flanged cast iron body and flanged inspection plate.

F. Automatic Ball Drips: Cast brass 3/4 inch (19 mm) in-line automatic ball drip with both ends threaded with iron pipe threads.

2.4 FIRE PUMP

- A. General:
 - 1. The fire pump shall be electric motor driven. The pump shall have a capacity as listed on the drawings. The fire pump shall furnish not less than 150% of the rated flow capacity at not less than 65% of rated net pressure.
 - 2. The fire pump shall be centrifugal horizontal split case fire pump.
 - 3. The fire pump shall be automatic start and manual stop. The fire pump shall start automatically at 10 psi (69 kPa) below jockey pump start pressure.
 - 4. The fire pump shall be 200 Volts, 3 phase at 60 Hertz.
- B. Electric Motor Driver
 - 1. The electric motor driver and fire pump controller shall be fully compatible.
 - 2. The electric motor driver shall be rated 20 horsepower and 1770 rpm.

2.5 FIRE PUMP CONTROLLER

- A. The fire pump controller shall be an automatic solid state soft starter starting type. The controller shall be completely wired, ready for field connections, and be mounted in a NEMA 2 enclosure.
- B. Limited-service controllers are not permitted.
- C. Provide a minimum run timer to prevent short cycling.
- D. The fire pump controller shall be provided with digital readouts of the voltage of each phase, amperage of each phase, and frequency.
- E. The fire pump controller shall monitor isolation switch open on secondary source, secondary source operation, fire pump running, loss of phase or line power, and phase reversal. Alarms shall be individually displayed on the front of the fire pump controller by lighting of visual lamps. The fire pump controller shall be equipped with terminals for remote monitoring of secondary power operation, pump running, loss of power, and phase reversal.
- F. The fire pump controller shall be provided with voltage surge arrestors installed in accordance with NFPA 20.
- G. The fire pump controller shall be equipped with an USB port for information download. The controller shall be provided with a minimum 3,000 events recorder.

2.6 AUTOMATIC TRANSFER SWITCH

A. Automatic transfer switch shall be factory assembled and packaged as a unit with the fire pump controller.

2.7 PRESSURE SENSING LINE

A. The fire pump controller and jockey pump controller shall be provided with completely separate pressure sensing lines in accordance with NFPA 20.

2.8 JOCKEY PUMP

- A. The jockey pump shall be an electric motor driven vertical in-line shaft type.
- B. The jockey pump flow shall be rated a minimum of 60 gpm (3.8 L/s).
- C. Pressure provided by the jockey pump shall be in accordance with NFPA 20.
- D. OS&Y valves shall be provided on the supply and discharge side of the jockey pump.

2.9 JOCKEY PUMP CONTROLLER

- A. Jockey pump controller shall be arranged for automatic and manual starting and stopping. The jockey pump shall be equipped with a bourbon tube pressure switch or solid state pressure switch with independent high and low adjustments for automatic stopping and starting.
- B. The controller shall be equipped with a "manual-off-automatic" switch. The controller shall be factory assembled and pre-wired, and ready for field connections, and be mounted in a NEMA 2 enclosure.
- C. No minimum run timer is allowed.

2.10 TEST HEADER

- A. The body of the test header shall be a surface type and constructed of brass or ductile iron.
- B. The finish of the test header finish plate shall be chrome plated.
- C. The number of valves shall be in accordance with NFPA 20.
- D. Provide a cap and chain for each valve.
- E. The test header shall be piped directly to the exterior through a straighttype header.
- F. An automatic ball drip valve shall be provided at the low point of the test header between the test header and check valve.

2.11 FLOW METER

- A. The flow meter shall be a venturi-type.
- B. Provide a meter throttle valve and meter control valves. The throttle valve and control valves shall be OS&Y valves.

- C. The flow meter shall be suitable for flow between 50% and 175% of the rated pump capacity.
- D. Arrange piping to permit flow meter to discharge to pump suction and to discharge through test header.
- E. Provide a circulation relief valve between the flow meter and the reconnection to the suction piping.
- F. Provide calibrated gauges on the inlet and outlet of the flow meter.
- G. Provide a laminated flow chart to convert the flow meter's velocity pressure reading into gpm flow rate. The flow chart shall be affixed by metal chain to the pipe adjacent to the flow meter

2.12 IDENTIFICATION SIGNS

- A. Valves: Rigid, plastic, steel or aluminum signs with white lettering on a red background with holes for easy attachment. Identification signs shall be attached to the valve or piping with chain.
- B. Pipe: Pretensioned pipe labels consisting of pre-coiled, semi-rigid plastic formed to cover the full circumference of pipe and attach to pipe without fasteners or adhesive. Labels shall be red background with white letters, with the words "Fire Protection". Labels shall be provided at a maximum interval of 20 feet (6.1 m) of pipe length.

2.13 SWITCHES

Contain in a weatherproof die cast/red baked enamel, oil resistant, aluminum housing with tamper resistant screws, 1/2 inch (13 mm) conduit entrance and necessary facilities for attachment to the valves. Provide two SPDT switches rated at 2.5 amps at 24 VDC.

2.14 GAUGES

- A. Provide gauges as required by NFPA 20.
- B. The gauges shall be liquid filled. Provide gauges where the normal pressure of the system is at the midrange of the gauge.

2.15 PIPE HANGERS, SUPPORTS, AND RESTRAINT OF SYSTEM PIPING

Pipe hangers, supports, and restraint of system piping shall be in accordance with NFPA 13 and NFPA 20.

2.16 WALL, FLOOR AND CEILING PLATES

Provide chrome plated steel escutcheon plates.

2.17 PUMP BASE PLATE AND PAD

A. The pump pad shall be provided with a common base plate for the pump and motor.

- B. Construct the base plate of cast iron with a raised lip tapped for drainage or welded steel shapes with suitable drainage.
- C. Each base plate shall have a 1 inch (25 mm) steel drain line piped to the nearest floor drain.
- D. Mount pump units and bases on a raised reinforced concrete pad that is an integral part of the reinforced concrete floor.

2.18 VALVE TAGS

Engraved black filled numbers and letters not less than 1/2 inch (15 mm) high for number designation, and not less than 1/4 inch (8 mm) for service designation on 19 gage, 1-1/2 inches 40 mm) round brass disc, attached with brass "S" hook, brass chain, or nylon twist tie.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be accomplished by the licensed contractor. Provide a qualified technician, experienced in the installation and operation of the type of system being installed, to supervise the installation and testing of the system.
- B. Installation of Piping: Accurately cut pipe to measurements established by the installer and work into place without springing or forcing. Piping shall not obstruct the minimum means of egress clearances required by NFPA 101. Pipe hangers, supports, and restraint of system piping, shall be installed in accordance with NFPA 13 and NFPA 20.
- C. Welding: Conform to the requirements and recommendations of NFPA 13.
- D. Drains: Install drains where necessary and required by NFPA 20. Drain piping shall be routed to properly discharge over floor drains or to site cones attached to floor drains. Such floor drains shall be of adequate size to readily accept the discharge from each drain under full flow and maximum pressure conditions. Drain piping shall also be allowed to be routed to the outside of the building, provided its discharge will not negatively impact the exterior conditions. Do not provide a direct drain connection to sewer system.
- E. Supervisory Switches: Provide supervisory switches for control valves, including the test header control valve.
- F. Provide escutcheon plates for exposed piping passing through walls, floors, or ceilings.

- G. Sleeves: Provide for pipes passing through masonry or concrete. Provide space between the pipe and the sleeve in accordance with NFPA 13. Seal this space with a UL Listed through penetration fire stop material in accordance with Section 07 84 00, FIRESTOPPING. Where core drilling is used in lieu of sleeves, also seal space around penetrations. Seal penetrations of walls, floors and ceilings of other types of construction, in accordance with Section 07 84 00, FIRESTOPPING.
- H. For the fire pump test header, provide the symbolic sign given in NFPA 170 and locate 8 to 10 feet (2400 to 3000 mm) above the header location. Size the sign to 18 by 18 inches (450 by 450 mm) with the symbol being at least 14 by 14 inches (350 by 350 mm).
- I. Firestopping shall be provided for all penetrations of fire resistance rated construction. Firestopping shall comply with Section 07 84 00, FIRESTOPPING.
- J. Securely attach identification signs to control valves, test header, pump suction, pump discharge, and bypass valves.
- K. Securely attach valve tags to each control valve.
- L. Repairs: Repair damage to the building or equipment resulting from the installation of the fire pump system by the installer at no additional expense to the Government.
- M. Interruption of Service: There shall be no interruption of the existing sprinkler protection, water, electric, or fire alarm services without prior permission of the COR. Contractor shall develop an interim fire protection program where interruptions involve occupied spaces. Request in writing at least one week prior to the planned interruption.
- N. The fire pump controller shall be located as close as practical and within site of the fire pump motor.
- O. Painting of Pipe: Pipe shall be painted only where located in areas with corrosive conditions or in finished areas where walls and ceilings have been painted. Paint primed surfaces with two coats of gloss red enamel. Paint valves and operating accessories with two coats of gloss red enamel. Exercise care to avoid painting sprinklers. Painting of sprinkler systems above suspended ceilings and in crawl spaces is not required. Painting shall comply with Section 09 90 00, PAINTING.
- P. All fire pump alarm and signals required by NFPA 20 for remote monitoring shall be supervised by the fire alarm system, including isolation switch open on secondary source, secondary source operation, fire pump running,

loss of phase or line power, and phase reversal in accordance with Section 28 31 00, FIRE DETECTION AND ALARM. Isolation switch open on secondary source, secondary source operation, fire pump running, loss of phase or line power, and phase reversal shall be supervisory fire alarm signals.

Q. The electric drive for pumps shall comply with the requirements of NFPA 20 and NFPA 70 and be in accordance with Section 26 05 19, LOW VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES. The fire pump supply conductors shall be protected in accordance with NFPA 70.

3.2 INSPECTION AND TEST

- A. Preliminary Inspection and Testing: Subject system to all inspections and tests in accordance with NFPA 20. When all necessary corrections have been accomplished, advise COR to schedule a final acceptance inspection and test. Flushing and hydrostatic testing and fire alarm monitoring of fire pump controller alarms and signals shall be witnessed by the COR or his designated representative.
- B. Final Acceptance Inspection and Testing: Perform in accordance with NFPA 20 in the presence of the COR or his designated representative. Furnish all labor and materials as required by NFPA 20 for the final acceptance test, including verification of fire alarm system monitoring of fire pump controller alarm and signals. The final acceptance test will not be conducted unless the required test equipment and equipment manufacturers or the equipment authorized representatives are present
- C. Gauges used for preliminary testing and final inspection and testing shall have been calibrated by an accredited laboratory within one year of the testing. Date of latest calibration shall be listed on the pressure gauge.

3.3 INSTRUCTIONS

A. Furnish the services of a factory trained instructor for not less than two hours for instructing personnel in the operation and maintenance of the system, on the dates requested by the COR.

- - - E N D - - -

---INTENTIONALLY BLANK---

SECTION 25 10 10 ADVANCED UTILITY METERING SYSTEM

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This Section includes the following for the advanced metering of the systems of the facility. The metered systems include the electrical power, natural gas distribution, fuel gas and fuel oil, steam, steam condensate, chilled water, heating water, domestic water, recovered water and makeup water systems. The metering systems in each facility are part of a Corporate-Wide utility metering system, rendering the VA accurate and automated metering of its facilities' energy and water flows. Metering systems are comprised of:
 - 1. PC-based workstation(s) or server(s) and software.
 - Communication network and interface modules for RS-232, RS-485, Modbus TCP/IP, IEEE 802.3 data transmission protocols.
 - 3. Electric meters.
 - 4. Volumetric flowmeters, temperature sensors and pressure transducers.
 - 5. Mass flowmeters.

1.2 RELATED WORK

- A. Section 33 10 00 WATER UTILITIES: references meters.
- B. Section 33 30 00 SANITARY SEWER UTILITIES

1.3 DEFINITIONS

- A. AMR: Automatic meter reading is the technology of automatically collecting consumption, diagnostic, and status data from water and energy metering devices (water, gas, electric, steam) and transferring that data to a central database for billing, troubleshooting, and analyzing.
- B. AUMS: Advanced Utility Metering System: the system described by this Section.
- C. BACnet: BACnet is a Data Communications Protocol for Building Automation and Control Networks. It is defined by ASHRAE/ANSI Standard 135 (ISO 16484-5) standard protocol.
- D. Data Over Cable Service Interface Specification (DOCSIS): an international standard defining communications and operation support interface requirements for a data over cable system, by the Cable Television Laboratories, Inc. consortium

- E. Data Head (on meters): converts analog and pulse signals to digital signals for transmission to the Site Data Aggregation Device. Also provides for limited storage of the digital signals.
- F. Device Accuracy: accuracy in this section is based on actual flow, not full scale or full range. Device accuracy measures the conversion of flow information to analog or pulse signals.
- G. Ethernet: Local area network, based on IEEE 802.3 standards.
- H. Firmware: Software (programs or data) that has been written onto readonly memory (ROM). Firmware is a combination of software and hardware. Storage media with ROMs that have data or programs recorded on them are firmware.
- I. Gateway: Bi-directional protocol translator connecting control systems that use different communication protocols.
- J. GB: gigabyte. When used to describe data storage, "GB" represents 1024 megabytes.
- K. HTML: Hypertext markup language.
- L. I/O: Input/output.
- M. KB: Short for kilobyte. When used to describe data storage, "KB" represents 1024 bytes.
- N. KY Pulse: A term used by the metering industry to describe a method of measuring consumption of electricity that is based on a relay changing status in response to the rotation of the disk in the meter.
- O. LAN: Local area network. Sometimes plural as "LANs."
- P. LCD: Liquid crystal display.
- Q. LonMark: An association comprising of suppliers and installers of LonTalk products. The Association provides guidelines for the implementation of the LonTalk protocol to ensure interoperability through Standard implementation.
- R. LonTalk: An open standard protocol developed by the Echelon Corporation that uses a "Neuron Chip" for communication.
- S. LonWorks: Network technology developed by the Echelon Corporation.
- T. Low Voltage: As defined in NFPA 70 for circuits and equipment operating at less than 50 V or remote-control, signaling and power-limited circuits.
- U. MB: megabyte. When used to describe data storage, "MB" represents 1024 kilobytes.
- V. Mbps: Megabytes per second, equal to 8 megabits per second

- W. Modbus TCP/IP: An open protocol for exchange of process data.
- X. Monitoring: Acquisition, processing, communication, and display of equipment status data, metered electrical parameter values, power quality evaluation data, event and alarm signals, tabulated reports, and event logs.
- Y. OTDR: Optical Time Domain Reflectometer. A test instrument that analyzes the light loss in an optical fiber. Used to find faults, splices and bends in the line, it works by sending out a light pulse and measuring its reflection. Such devices can measure fiber lines that are longer than 150 miles
- Z. PC: Personal computer
- AA. PICS, Protocol Implementation Conformance Statement: A written document that identifies the particular options specified by BACnet that are implemented in a device.
- BB. REO: Resident Engineer Office: the VA office administering the construction contract.
- CC. Reporting Accuracy: this is the root-mean-square sum of all of the metering devices' inaccuracies: measurement inaccuracy, mechanical inaccuracy, analog-to-digital or pulse integration inaccuracy, etc., up to the meter's data head.
- DD. rms: Root-mean-square value of alternating voltage, which is the square root of the mean value of the square of the voltage values during a complete cycle.
- EE. Router: A device that connects two or more networks at the network layer.
- FF. .RS-232: A Telecommunications Industry Association standard for asynchronous serial data communications between terminal devices.
- GG. RS-485: A Telecommunications Industry Association standard for multipoint communications using two twisted-pairs.
- HH. .TB: terabyte. When used to describe data storage, "TB" represents 1024 gigabytes.
- II. TCP/IP: Transport control protocol/internet protocol.
- JJ. .Turn-down: the maximum flow divided by the minimum flow through a meter; used along with accuracy requirements. For example, a meter shall be accurate to within 2% of actual flow with throughout a 20:1 turndown
- KK. THD: Total harmonic distortion.
- LL. UPS: Uninterruptible power supply; used both in singular and plural context.

- MM. UTP: Unshielded twisted pair cabling, used to limit crosstalk and electromagnetic interference from the environment
- NN. WAN: Wide area network.

1.4 QUALITY ASSURANCE

- A. Installer Qualifications: Manufacturer's authorized representative who is trained and approved for installation of units required for this Project.
- B. Manufacturer Qualifications: A firm experienced at least three years in manufacturing and installing power monitoring and control equipment similar to that indicated for this Project and with a record of successful inservice performance.
- C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency, and marked for intended use.
- D. System Modifications: Make recommendations for system modification in writing to the VA. No system modifications shall be made without prior written approval of the VA. Any modifications made to the system shall be incorporated into the Operations and Maintenance Instructions, and other documentation affected. Provide to the VA software updates for all software furnished under this specification during this contract's construction and verification periods and for the first two years after government acceptance. All updated software shall be verified as part of this contract.

1.5 PERFORMANCE

- A. The advanced utility metering system shall conform to the following:
 - Site Data Aggregation Device Graphic Display: The system shall display up to 4 graphics on a single screen with a minimum of (20) dynamic points per graphic. All current data shall be displayed within (10) seconds of the request.
 - Site Data Aggregation Device Graphic Refresh: The system shall update all dynamic points with current data within ten seconds. Data refresh shall be automatic, without operator intervention.
 - 3. Meter Scan: All changes of metered values shall be transmitted over the high-speed network such that any data used or displayed at a controller or Site Data Aggregation Device will be current, within the prior ten seconds.

- Alarm Response Time: The maximum time from when meter goes into alarm to when it is annunciated at the workstation shall not exceed ten seconds.
- 5. Reporting Accuracy: Listed below are minimum acceptable reporting accuracies for all values within the below minimum turn-down envelope reported by the meters:

Measured Variable	Units Measured	Minimum Turn-Down of Meter	Reporting Accuracy (Note 1)
Domestic Water flow	l/s (GPH)	20:1	±2%

Table	1.5:	Meter	Performance	Criteria
-------	------	-------	-------------	----------

Table Notes:

- This table shows reporting accuracy, not merely the meter's accuracy. Reporting accuracy includes meter accuracy and data conversion accuracy. See Article 1.3 in this Section for definition. Accuracy is shown against the measured value, not against the full range of the meter.
- 2. l/s: liter per second CFH: cubic feet per hour kW: kilowatt MBH: 1000's British Thermal Units per hour GPH: gallons per hour

1.6 WARRANTY

- A. Labor and materials for advanced utility metering systems shall be warranted for a period as specified in the contract.
- B. Advance utility metering system failures during the warranty period shall be adjusted, repaired, or replaced at no cost or reduction in service to the owner. The system includes all computer equipment, transmission equipment, and all sensors and metering devices.

1.7 SUBMITTALS

- A. Product Data: for each type of product indicated, Attach copies of approved Product Data submittals for products (such as flowmeters, temperature sensors and pressure transmitters, switchboards and switchgear) that describe advance utility metering features to illustrate coordination among related equipment and utility metering and control.
- B. Shop Drawings: include plans, elevations, sections, details, and attachments to other work.

- Outline Drawings: Indicate arrangement of meters, components and clearance and access requirements. Clearly identify system components, internal connections, and all field connections.
- Block Diagram: Show interconnections between components specified in this Section and devices furnished with power distribution system components. Indicate data communication paths and identify networks, data buses, data gateways, concentrators, and other devices to be used. Describe characteristics of network and other data communication lines.
- 3. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
- 4. Wiring Diagrams: Power, signal, and communications wiring. Coordinate nomenclature and presentation with a block diagram. Show all communications network components and include a communications singleline diagram indicating device interconnection and addressing information for all system devices. Identify terminal blocks used for interconnections and wire type to be used.
- 5. UPS sizing calculations for workstation.
- C. Software and Firmware Operational Documentation:
 - Self-study guide describing the process for setting equipment's network address; setting Owner's options; procedures to ensure data access from any PC on the network, using a standard Web browser; and recommended firewall setup.
 - 2. Software operating and upgrade manuals.
 - Software Backup: On a compact disc, complete with Owner-selected options.
 - Device address list and the set point of each device and operator option, as set in applications software.
 - 5. Graphic file and printout of graphic screens and related icons, with legend.
 - 6. "Quick-Start" guide describes a simple, three-step commissioning process for setting the equipment's Ethernet address, and ensuring trouble-free data access from any PC on the network, using a standard web browser.
- D. Software Upgrade Kit: For Owner to use in modifying software to suit future utility metering system revisions.

- E. Firmware Upgrade Kit: For Owner to use in modifying firmware to suit future power system revisions or advanced utility metering system revisions. Firmware updates, and necessary software tools for firmware updates, shall be downloadable from the internet. VA shall be able to update firmware, in equipment, without removing device from the equipment. VA shall be capable of updating firmware over the utility metering communication network or through local communication ports on the device.
- F. Software licenses and upgrades required by and installed for operating and programming digital and analog devices.
- G. Qualification Data: For installer and manufacturer
- H. Other Informational Submittals:
 - 1. System installation and setup guides, with data forms to plan and record options and setup decisions.
- I. Revise and update the Contract Drawings to include details of the system design. Drawings shall be on 17 by 11 inches sheets. Details to be shown on the Design Drawing include:
 - Details on logical structure of the network. This includes logical location of all network hardware.
 - Manufacturer and model number for each piece of computer and network hardware.
 - 3. Physical location for each piece of network or computer hardware.
 - 4. Physical routing of LAN cabling.
 - 5. Physical and qualitative descriptions of connectivities.

1.8 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For advanced utility metering system components and meters, to include in emergency, operation, and maintenance manuals. Include the following:
 - 1. Operating and applications software documentation.
 - 2. Software licenses.
 - 3. Software service agreement.
 - 4. PC installation and operating documentation, manuals, and software for the PC and all installed peripherals. Software shall include system restore, emergency boot compact disks, and drivers for all installed hardware. Provide separately for each PC.
 - 5. Hard copies of manufacturer's specification sheets, operating specifications, design guides, user's guides for software and hardware, and PDF files on CD-ROM of the hard-copy submittal.

- 6. In addition to the copies required by 01 00 00, provide 5 bound paper copies of the Operation and Maintenance Data and two compact disks (CD), with all Instructions as Acrobat PDF files. The pdf files shall be identical to the paper copies and shall Acrobat navigation tools including Bookmarks for each Chapter.
- 7. The advanced utility metering system Operation and Maintenance Instructions shall include:
 - a. Procedures for the AUMS system start-up, operation, and shutdown.
 - b. Final As-Built drawings, including actual LAN cabling routing shown on architectural backgrounds.
 - 1) IP address(es) as applicable for each piece of network hardware.
 - IP address for each computer server, workstation, and networked printer.
 - Network identifier (name) for each printer, computer server and computer workstation.
 - 4) CEA-709.1B address (domain, subnet, node address) for each CEA-709.1B TP/FT-10 to IP Router.
 - c. Routine maintenance checklist, rendered in a Microsoft Excel format. The routine maintenance checklist shall be arranged in a columnar format. The first column shall list all installed devices, the second column shall list each device's node identifier/address, the third column shall describe each device's physical location, the fourth column shall state the maintenance activity or state no maintenance required, the fifth column shall state the frequency of the maintenance activity, frequency of calibration and the sixth column for additional comments or reference.
 - d. Qualified service organization list.
 - e. In addition to the requirements in Section 01 33 23, the submittal shall include manufacturer Installation Requirements.
 - f. Include complete instructions for calibration of each meter type and model.
 - g. Start-Up and Start-Up Testing Report.
 - h. Performance verification test procedures and reports.
 - i. Preventive Maintenance Work Plan.
 - j. In addition to factory-trained manufacturers' representatives requirements in 01 00 00, provide signed letter by factory-trained manufacturers' representatives stating that the system and

components are installed in strict accordance with the manufacturers' recommendations.

B. Field quality-control test reports.

1.9 LICENSING AGREEMENT

- A. Licenses procured as part of this work become the property of the government upon acceptance of the work. Licenses shall have no expiration.
- B. Technical Support: Beginning with Government Acceptance, provide software support for two years.
- C. Upgrade Service: Update software to latest version at Project completion. Install and program software upgrades that become available within two years from date of Government Acceptance. Upgrading software shall include the operating systems. Upgrade shall include new or revised licenses for use of software.
 - 1. Provide 30-day notice to Owner to allow scheduling and access to system and to allow Owner to upgrade computer equipment if necessary.

1.10 MAINTENANCE AND SERVICE

- A. Preventive Maintenance Requirements: provide a preventative maintenance plan with attached procedures indicated by meter and component manufacturers. Perform maintenance procedures for a period of 1 year after government acceptance, at frequencies and using procedures required by the meter and component manufacturers. At a minimum and if the manufacturer is silent on its preventative maintenance requirements, frequencies, deliverables, and activities shall comply with the following:
 - 1. Preventive Maintenance Work Plan: prepare a Preventive Maintenance Work Plan to schedule all required preventive maintenance. VA approval of the Work Plan shall be obtained. Adhere to the approved work plan to facilitate VA verification of work. If the Contractor finds it necessary to reschedule maintenance, a written request shall be made to the VA detailing the reasons for the proposed change at least five days prior to the originally scheduled date. Scheduled dates shall be changed only with the prior written approval of the REO.
 - 2. Semiannual Maintenance: perform the following Semiannual Maintenance as follows:
 - a. Perform data backups on all Server Hardware.
 - b. Run system diagnostics and correct diagnosed problems.
 - c. Perform fan checks and filter changes for AUMS hardware.

25 10 10 - 9

- d. Perform all necessary adjustments on printers.
- e. Resolve all outstanding problems.
- f. Install new ribbons, ink cartridges and toner cartridges into printers, and ensure that there is at least one spare ribbon or cartridge located at each printer.
- 3. Maintenance Procedures
 - a. Maintenance Coordination: Any scheduled maintenance event by Contractor that will result in component downtime shall be coordinated with the VA as follows. Time periods shall be measured as actual elapsed time from beginning of equipment off-line period, including working and non-working hours.
 - For non-redundant computer server hardware, provide 14 days' notice, components shall be off-line for no more than 8 hours.
 - 2) For redundant computer server hardware, provide 7 days notice, components shall be off-line for no more than 36 hours.
 - 3) For active (powered) network hardware, provide 14 days notice, components shall be off-line for no more than 6 hours.
 - For cabling and other passive network hardware, provide 21 days notice, components shall be off-line for no more than 12 hours.
 - b. Software/Firmware: Software/firmware maintenance shall include operating systems, application programs, and files required for the proper operation of the advanced utility metering system regardless of storage medium. User- (project site-) developed software is not covered by this contract, except that the advanced utility metering system software/firmware shall be maintained to allow user creation, modification, deletion, and proper execution of such user-developed software. Perform diagnostics and corrective reprogramming as required to maintain total advanced utility metering system operations. Backup software before performing any computer hardware and software maintenance. Do not modify any parameters without approval from the VA. Any approved changes and additions shall be properly documented, and the appropriate manuals shall be updated.
 - c. Network: Network maintenance shall include testing transmission media and equipment to verify signal levels, system data rates, errors, and overall system performance.

B. Service Call Reception

- A VA representative will advise the Contractor by phone or in person of all maintenance and service requests, as well as the classification of each based on the definitions specified. A description of the problem or requested work, date and time notified, location, classification, and other appropriate information will be placed on a Service Call Work Authorization Form by the VA.
- 2. The Contractor shall have procedures for receiving and responding to service calls during regular working hours. A single telephone number shall be provided for receipt of service calls during regular working hours. Service calls shall be considered received by the Contractor at the time and date the telephone call is placed by the VA.
- 3. Separately record each service call request, as received on the Service Call Work Authorization form. Complete the Service Call Work Authorization form for each service call. The completed form shall include the serial number identifying the component involved, its location, date, and time the call was received, nature of trouble, names of the service personnel assigned to the task, instructions describing what has to be done, the amount and nature of the materials to be used, the time and date work started, and the time and date of completion.
- 4. Respond to each service call request within two working hours. The status of any item of work must be provided within four hours of the inquiry during regular working hours, and within sixteen hours after regular working hours or as needed to repair equipment.

1.11 SPARE PARTS

- A. Furnish spare parts described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - Addressable Relays: One for every ten installed. Furnish at least one of each type.
 - Data Line Surge Suppressors: One for every ten of each type installed.
 Furnish at least one of each type.
- B. Furnish spare parts shall not be used for any warranty-required remediation.

1.12 APPLICABLE PUBLICATIONS

A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent

25 10 10 - 11

December 29, 2023 Tuscaloosa VAMC Correct Failing Sanitary Sewer, Water Main, FP Deficiencies 100% Construction Documents Tuscaloosa, AL 35404 Project No: 679-21-102 referenced, unless otherwise noted. Publications are referenced in the text by the basic designation only. B. American Society of Mechanical Engineers (ASME): B16.1-1998.....Cast Iron Pipe Flanges and Flanged Fittings B31.1-2007.....Power Piping B31.8-2007.....Gas Transmission and Distribution Piping Systems B31.9-2008.....Building Services Piping B40.100-1998.....Pressure Gauges and Gauge Attachments C. American Society of Heating, Refrigerating and Air-Conditioning Engineers ASHRAE 135-2008.....A Data Communication Protocol for Building Automation and Control Networks (ANSI) D. American Society for Testing and Materials (ASTM) A53-2006.....Pipe, Steel, Black and Hot-Dipped, Zinc-Coated, Welded and Seamless A106-2006.....Seamless Carbon Steel Pipe for High Temperature Service E. Consumer Electronics Association (CEA) 709.1B-2002.....Control Network Protocol Specification 709.3-1999.....Free-Topology Twisted-Pair Channel Specification 852-A-2004......Tunneling Component Network Protocols Over Internet Protocol Channels F. Federal Communications Commission (FCC) EMC-2002.....FCC Electromagnetic Compliance Requirements G. Institute of Electrical and Electronics Engineers, Inc. (IEEE) 81-1983..... IEEE Guide for Measuring Earth Resistivity, Ground Impedance, and Earth Surface Potentials of a Ground System 100-2000..... of IEEE Standards Terms 802.1D-2004......Media Access Control Bridges 802.2-2003......Standards for Local Area Networks: Logical Link Control 802.3-2005.....Information Technology - Telecommunications and Information Exchange between Systems. Local and Metropolitan Area Networks - Specific Requirements - Part 3: Carrier Sense Multiple Access with

Tuscaloosa VAMC December 29, 2023 Correct Failing Sanitary Sewer, Water Main, FP Deficiencies 100% Construction Documents Tuscaloosa, AL 35404 Project No: 679-21-102 Collision Detection (CSMA/CD) Access Method and Physical Layer Specifications (ANSI) 1100-2005..... Recommended Practice for Powering and Grounding Electronic Equipment (ANSI) C37.90.1-2002.....Surge Withstand Capability (SWC) Tests for Relays and Relay Systems Associated with Electric Power Apparatus C57.13-2008..... Standard Requirements for Instrument Transformers C62.41.1-2002.....Guide on the Surges Environment in Low-Voltage (1000 V and Less) AC Power Circuits C62.41.2-2002.....Recommended Practice on Characterization of Surges in Low-Voltage (1000 V and Less) AC Power Circuits H. International Electrotechnical Commission (IEC) IEC 61000-2005.....Electromagnetic Compatibility (EMC)- Part 4-5: Testing and Measurement Techniques; Surge Immunity Test I. National Electrical Contractors Association NECA 1-2006.....Good Workmanship in Electrical Construction J. National Electrical Manufacturers Association (NEMA) 250-2008......Enclosures for Electrical Equipment (1000 Volts Maximum) C12.1-2008.....Electric Meters; Code for Electricity Metering C12.20-2002.....Electricity Meter - 0.2 and 0.5 Accuracy Classes C62.61-1993.....Gas Tube Surge Arresters on Wire Line Telephone Circuits ICS 1-2008..... Standard for Industrial Control and Systems General Requirements K. National Institute of Standards and Technology (NIST) 800, Part 39-2008.....[DRAFT] Managing Risk from Information Systems: An Organizational Perspective 800, Part 46-2009.....Guide to Enterprise Telework and Remote Access Security 800, Part 52-2009.....Recommended Security Controls for Federal Information Systems and Organizations (FIPS) 200-2006......Minimum Security Requirements for Federal Information and Information Systems L. National Fire Protection Association (NFPA)

Tuscaloosa VAMC December 29, 2023 Correct Failing Sanitary Sewer, Water Main, FP Deficiencies 100% Construction Documents Tuscaloosa, AL 35404 Project No: 679-21-102 30-08......Flammable and Combustible Liquids Code 70-2008.....National Electrical Code (NEC) 54-06.....National Fuel Gas Code 85-07.....Boiler and Combustion Systems Hazard Code 101-06....Life Safety Code Cables for Use in Air-Handling Spaces M. NSF International 14-03..... Plastics Piping Components and Related Materials 61-02.....Drinking Water System Components-Health Effects (Sections 1-9) N. Telecommunications Industry Association, (TIA/EIA) H-088C3.....Pathway Design Handbook 232-F-2002.....Interface Between Data Terminal Equipment and Data Circuit-Terminating Equipment Employing Serial Binary Data Interchange 485-A-2003.....Electrical Characteristics of Generators and Receivers for Use in Balanced Digital Multipoint System 568-C.1-2009......Commercial Building Telecommunications Cabling Standard 606-A-2002.....Administration Standard for the Telecommunications Infrastructure 607-A-2002.....Commercial Building Grounding (Earthing) and Bonding Requirements for Telecommunications O. Underwriters Laboratories, Inc. (UL): 916-2007..... Energy Management Equipment 5085-3-2007.....UL Standard for Safety Standard Low Voltage 1244-2000..... Electrical and Electronic Measuring and Testing Equipment 1581-2006.....Electrical Wires, Cables, and Flexible Cords PART 2 - PRODUCTS ADVANCED UTILITY METERING SYSTEM 2.1 A. Functional Description 1. Meter and record load profiles. Chart energy and water consumption patterns. a. Calculate and record the following:

25 10 10 - 14

- 1) Load factor.
- 2) Peak demand periods.
- 3) Consumption correlated with facility activities.
- b. Measure and record metering data for the following:
 - 1) Domestic water.
- c. Software: calculate allocation of utility costs.
 - Automatically import energy and water usage records to allocate energy and water costs
 - 2) Verify utility bills and analyze alternate energy rates.
- B. Communications Components and Networks
 - Site Data Aggregation Device and its networked meters shall communicate using BACNet protocol. Backbone shall communicate using ISO 8802-3 (Ethernet) Data Link/Physical layer protocol and BACnet/IP addressing as specified in ASHRAE/ANSI 135-2008, BACnet Annex J.
 - a. Control products, communication media, connectors, repeaters, hubs, and routers shall comprise a BACnet internetwork. Controller and operator interface communication shall conform to ANSI/ASHRAE Standard 135-2008, BACnet.
 - b. Each controller shall have a communication port for connection to an operator interface.
 - 2. Network Configuration: High-speed, multi-access, open nonproprietary, industry standard LAN and WAN and Internetworked LAN.
 - 3. Communication protocol; LANs complying with RS-485 or RS-485 accessed through Ethernet, 100 Base-TX Ethernet, and Modbus TCP/IP.
 - 4. Network Hardware
 - a. Building Point of Connection Hardware
 - 1) Active equipment and communication interfaces.
 - 2) Switches, hubs, bridges, routers, and servers.
 - b. IP Network Hardware
 - 1) Wire and Cables, copper connectivity devices.
 - 2) Fiber Optic Patch Panel.
 - 3) Fiber Optic Media Converter
 - 4) Ethernet Switch
 - 5) IP Router
 - 5. Communication Security
 - a. Remote teleworking and remote access of the network shall be through
 - a firewall, at the Site Data Aggregation Device, complying with the

requirements associated with Level 1 security in the Federal Information Processing Standard 140-2 (2002), Security Requirements for Cryptographic Modules.

b. Direct access to network shall be restricted as directed by the facility engineer.

2.2 SITE DATA AGGREGATION DEVICE - PERSONAL COMPUTER WORKSTATION

- A. Hardware
 - 1. Workstation Hardware
 - a. Environmental Conditions: System components shall be capable of withstanding Indoor installation in spaces that have environmental controls to maintain ambient conditions of 36 to 140 deg F dry bulb temperature and 20 to 95% relative humidity, noncondensing environmental conditions without mechanical or electrical damage or degradation of operating capability.
 - b. Computer: Commercial standard with supporting 32- or 64-bit hardware (as limited by the advanced utility metering system software) and software enterprise server. Internet Explorer v6.0 SP1 or higher, Windows Script Hosting version 5.6 or higher, Windows Message Queuing, Windows Internet Information Services (IIS) v5.0 or higher, minimum 2.8 GHz processor, minimum 4GB DDR3 SDRAM (minimum 1333 Mhz) memory, minimum 1 TB 7200 rpm SATA hard drive with 16 MB cache, 512 MB video card, and 16 speed high density DVD-RW+/optical drive.
 - c. Real-Time Clock:
 - 1) Accuracy: Plus or minus 1 minute per month.
 - Time Keeping Format: 24-hour time format including seconds, minutes, hours, date, day, and month; automatic reset by software.
 - 3) Clock shall function for one year without power.
 - Provide automatic time correction once every 24 hours by synchronizing clock with the Time Service Department of the U.S. Naval Observatory.
 - d. Serial Ports: Four USB ports and two RS-232-F serial ports for general use, with additional ports as required. Data transmission rates shall be selectable under program control.
 - e. Parallel Port: Enhanced.
 - f. Sound Card: For playback and recording of digital WAV sound files associated with audible warning and alarm functions.

- g. Color Monitor: PC compatible, not less than 22 inches, LCD type, with a minimum resolution of 1280 by 1024 pixels, noninterlaced, and a maximum dot pitch of 0.28 mm.
- h. Keyboard: Minimum of 64 characters, standard ASCII character set based on ANSI INCITS 154.
- i. Mouse: Standard, compatible with installed software.
- j. Removable Disk Storage: Include the following, each with appropriate controller:
 - Minimum 1 TB removable hard disk, maximum average access time of 10 ms.
- k. Network Interface Card (NIC): integrated 10-100-1000 Base-TX Ethernet NIC with an RJ45 connector or a 100Base-FX Ethernet NIC with an SC/ST connector.
- Cable Modem: 42.88 Mbps, DOCSIS 3.0 Certified, also backwards compatible with DCOSIS 2.0 and DOCSIS 1.1/1.0 standards. Provide Ethernet or USB connectivity.
- m. Optical Modem: full duplex link, for use on 10 GBase-R single-mode and multi-mode fiber with a XENPAK module.
- n. Modem: 56,600 bits per second, full duplex for asynchronous communications. With error detection, auto answer/autodial, and call-in-progress detection. Modem shall comply with requirements in ITU-T v.34, ITU-T v.42, ITU-T v.42 Appendix VI for error correction, and ITU-T v.42 BIS for data compression standards; and shall be suitable for operating on unconditioned voice-grade telephone lines complying with 47 CFR 68.
- o. Audible Alarm: Manufacturer's standard.
- Printers: provide a dedicated, minimum resolution 600 dpi, color laser printer, connected to the Site Data Aggregation Device through a USB interface.
 - a. If a network printer is used instead of this dedicated printer, it shall have a 100Base-T interface with an RJ45 connection and shall have a firmware print spooler compatible with the Operating System print spooler.
 - b. RAM: 512 MB, minimum.
 - c. Printing Speed: Minimum twenty six pages per minute (color); minimum 30 pages per minute (black/white).

- d. Paper Handling: Automatic sheet feeder with 250-sheet x 8.5 inch x11 inch paper cassette and with automatic feed.
- 3. RS-232 ASCII Interface
 - a. ASCII interface shall allow RS-232 connections to be made between a meter or circuit monitor operating as the host PC and any equipment that will accept RS-232 ASCII command strings, such as local display panels, dial-up modems, and alarm transmitters.
 - b. Pager System Interface: Alarms shall be able to activate a pager system with customized message for each input alarm.
 - c. RS-232 output shall be capable of connection to a pager interface that can be used to call a paging system or service and send a signal to a portable pager. System shall allow an individual alphanumeric message per alarm input to be sent to paging system. This interface shall support both numeric and alphanumeric pagers.
 - d. Alarm System Interface: RS-232 output shall be capable of transmitting alarms from other monitoring and alarm systems to workstation software.
 - e. Cables: provide Plenum-Type, RS-232 Cable: Paired, 2 pairs, No. 22 AWG, stranded (7x30) tinned copper conductors, plastic insulation, and individual aluminum foil-polyester tape shielded pairs with 100 percent shield coverage; plastic jacket. Pairs are cabled on common axis with No. 24 AWG, stranded (7x32) tinned copper drain wire.
 - 1) NFPA 70, Type CMP.
 - 2) Flame Resistance: NFPA 262, Flame Test.
- 4. Rack-Mounted Server Hardware
 - a. Environmental Conditions: System components shall be capable of withstanding Indoor installation in spaces that have environmental controls to maintain ambient conditions of 36 to 140 deg F dry bulb temperature and 20 to 95% relative humidity, noncondensing environmental conditions without mechanical or electrical damage or degradation of operating capability.
 - b. Computer: Commercial rack-mounted with supporting 32- or 64-bit hardware (as limited by the advanced utility metering system software) and software enterprise server. Internet Explorer v6.0 SP1 or higher, Windows Script Hosting version 5.6 or higher, Windows Message Queuing, Windows Internet Information Services (IIS) v5.0 or

higher, minimum 2.8 GHz processor, minimum 4GB DDR3 SDRAM (minimum 1333 Mhz) memory, minimum 1 TB 7200 rpm SATA hard drive with 16 MB cache, and 16 speed high density DVD-RW+/- optical drive.

- c. Real-Time Clock:
 - 1) Accuracy: Plus or minus 1 minute per month.
 - Time Keeping Format: 24-hour time format including seconds, minutes, hours, date, day, and month; automatic reset by software.
 - 3) Clock shall function for one year without power.
 - Provide automatic time correction once every 24 hours by synchronizing clock with the Time Service Department of the U.S. Naval Observatory.
- d. Serial Ports: Four USB ports and two RS-232-F serial ports for general use, with additional ports as required. Data transmission rates shall be selectable under program control.
- e. Parallel Port: Enhanced.
- f. Removable Disk Storage: Include minimum 1 TB removable hard disk, maximum average access time of 10 ms, with appropriate controller:
- g. Network Interface Card (NIC): integrated 10-100-1000 Base-TX Ethernet NIC with an RJ45 connector or a 100Base-FX Ethernet NIC with an SC/ST connector.
- h. Cable Modem: 42.88 Mbps, DOCSIS 2.0 Certified, also backwards compatible with DOCSIS 2.0 and DOCSIS 1.1/1.0 standards. Provide Ethernet or USB connectivity.
- i. Optical Modem: full duplex link, for use on 10 GBase-R single-mode and multi-mode fiber with a XENPAK module.
- j. Modem: 56,600 bits per second, full duplex for asynchronous communications. With error detection, auto answer/autodial, and call-in-progress detection. Modem shall comply with requirements in ITU-T v.34, ITU-T v.42, ITU-T v.42 Appendix VI for error correction, and ITU-T v.42 BIS for data compression standards; and shall be suitable for operating on unconditioned voice-grade telephone lines complying with 47 CFR 68.
- k. Audible Alarm: Manufacturer's standard.
- 5. RS-232 ASCII Interface
 - a. ASCII interface shall allow RS-232 connections to be made between a meter or circuit monitor operating as the host PC and any equipment

that will accept RS-232 ASCII command strings, such as local display panels, dial-up modems, and alarm transmitters.

- b. Pager System Interface: Alarms shall be able to activate a pager system with customized message for each input alarm.
- c. RS-232 output shall be capable of connection to a pager interface that can be used to call a paging system or service and send a signal to a portable pager. System shall allow an individual alphanumeric message per alarm input to be sent to paging system. This interface shall support both numeric and alphanumeric pagers.
- d. Alarm System Interface: RS-232 output shall be capable of transmitting alarms from other monitoring and alarm systems to workstation software.
- e. Cables: provide Plenum-Type, RS-232 Cable: Paired, 2 pairs, No. 22 AWG, stranded (7x30) tinned copper conductors, plastic insulation, and individual aluminum foil-polyester tape shielded pairs with 100 percent shield coverage; plastic jacket. Pairs are cabled on common axis with No. 24 AWG, stranded (7x32) tinned copper drain wire.
 - 1) NFPA 70, Type CMP.
 - 2) Flame Resistance: NFPA 262, Flame Test.

B. Software

- 1. Operating System (OS)
 - a. For a Site Data Aggregation Device connected to multiple utility meters, software shall reside on the Workstation or Server PC connected to a network able to poll and support over 1000 utility metering devices; software shall be web-enabled with the option to add custom graphics displays and additional web-enabled clients. BACNet, Ethernet, Modbus TCP/IP, RS-232, and RS-485 digital communications.
 - b. Operating System Software: Based on 32- or 64-bit, MicrosoftWindows operating system, as required by the metering and database software. Software shall have the following features:
 - Multiuser and multitasking to allow independent activities and monitoring to occur simultaneously at different workstations.
 - Graphical user interface to show pull-down menus and a menu tree format.

- Capability for future additions within the indicated system size limits.
- Office Automation Software shall consist of the e-mail, spreadsheet, and word processing portions of the project site's standard office automation software.
- Virus Protection Software shall consist of the project site's standard virus protection software complete with a virus definition update subscription.
- 4. Configuration server shall meet the requirements of CEA-852-A.
- 5. Network configuration tool shall meet the following minimum requirements:
 - a. It shall allow configuration of the network while off-line such that an operator may set up changes to the network while disconnected from the network, and then execute all of them once connected.
 - b. It shall have a graphics-based user interface and be able to display and print a graphical representation of the control network.
 - c. It shall be capable of generating and printing a table containing domain/subnet/node address and node identifier for the entire network or any subset thereof, selected by the User.
 - d. It shall be capable of merging two existing standard databases into a single standard database.
- 6. Metering Software
 - a. Basic Requirements:
 - 1) Fully compatible with and based on the approved operating system.
 - Password-protected operator login and access; three levels, minimum.
 - 3) Password-protected setup functions.
 - 4) Context sensitive on-line help.
 - 5) Capability of creating, deleting, and copying files; and automatically maintaining a directory of all files, including size and location of each sequential and random-ordered record.
 - Capability for importing custom icons into graphic views to represent alarms and I/O devices.
 - 7) Automatic and encrypted backups for database and history; automatically stored at the Site Data Aggregation Device and encrypted with a nine-character alphanumeric password, which must be used to restore or read data contained in backup.

- Operator audit trail for recording and reporting all changes made to user-defined system options.
- b. Workstation and Server Functions:
 - 1) Support other client PCs on the LAN and WAN.
 - 2) Maintain recorded data in databases accessible from other PCs on the LAN and WAN.
- c. Data Formats:
 - User-programmable export and import of data to and from commonly used Microsoft Windows spreadsheet, database, billing, and other applications, using dynamic data exchange technology.
 - 2) Option to convert reports and graphics to HTML format.
 - 3) Interactive graphics.
 - 4) Option to send preprogrammed or operator designed e-mail reports.
 - 5) Option to serve information to third-party applications via Object Linking and Embedding for Process Control using open standards.
- d. Metered data: Display metered values in real time with a rigid time-stamp. Couple all metered data with measured outside air conditions at the relevant facility.
- e. Metered Data alarms: Provide generic alarm modules to notify Users and highlight metered data gaps, data spikes outside of range, and data timestamp errors.
 - 1) Customize the generic alarm modules to the application.
 - 2) Modules shall allow for user adjustment of alarm criteria.
 - 3) Alarm notices shall be shown via hyperlinks on the graphical User interface, and shall also be shown by flags within the data set.
- f. Automatic Data Scrubbing: Provide tools for User-programming of rules to scrub the data of the following errors: data gaps, data spikes outside of range, and data timestamp errors. Use these rules to scrub the raw metered data. Flag all data which has been so scrubbed.
- g. Remote control:
- (For electrical load control) Display circuit-breaker status and allow breaker control.
- User defined with load-shedding automatically initiated and executed schemes responding to programmed time schedules, set points of metered demands, utility contracted load shedding, or combinations of these.

- h. Equipment Documentation: Database for recording of equipment ratings and characteristics; with capability for graphic display on monitors.
- i. User-Defined Events: Display and record with date and time stamps accurate to 0.1 second, and including the following:
 - 1) Operator log on/off.
 - 2) Attempted operator log on/off.
 - 3) All alarms.
 - 4) Equipment operation counters.
 - 5) Out-of-limit, pickup, trip, and no-response events.
- j. (for electrical power monitoring) Waveform Data: Display and record waveforms on demand or automatically on an alarm or programmed event; include the graphic displays of the following, based on user-specified criteria:
 - 1) Phase voltages, phase currents, and residual current.
 - Overlay of three-phase currents and overlay each phase voltage and current.
 - 3) Waveforms ranging in length from 2cycles to 5 minutes.
 - 4) Disturbance and steady-state waveforms up to 512 points per cycle.
 - 5) Transient waveforms up to 83,333 points per cycle on 60-Hz base.
 - 6) Calculated waveform on a minimum of four cycles of data of the following:
 - a) THD.
 - b) rms magnitudes.
 - c) Peak values.
 - d) Crest factors.
 - e) Magnitude of individual harmonics.
- k. Data Sharing: Allow export of recorded displays and tabular data to third-party applications software on the local server.
- 1. Activity Tracking Software:
 - Automatically compute and prepare activity demand and energy-use statements based on metering of energy use and peak demand integrated over user-defined interval.
 - Intervals shall be same as used by electric utilities, including current vendor.
 - Import metered data from saved records that were generated by metering and monitoring software.

- Maintain separate directory for each activity's historical billing information.
- 5) Prepare summary reports in user-defined formats and time intervals.
- m. Passwords
- n. Protocol Drivers
- System Graphic Displays: provide interactive color-graphics platform with pull-down menus and mouse-driven generation of power system graphics, in formats widely used for such drafting; to include the following:
 - 1) Site plan.
 - 2) Floor plans.
 - 3) Equipment elevations.
 - 4) Single-line diagrams.
 - 5) Custom graphic screens configured, not programmed, using drag-anddrop tools available within the software.
- p. Alarms: display and record alarm messages from discrete input and controls outputs, according to user programmable protocol.
 - Functions requiring user acknowledgment shall run in background during computer use for other applications and override other presentations when they occur.
- q. Trending: display and record data acquired in real-time from different meters or devices, in historical format over user-defined time; unlimited as to interval, duration, or quantity of trends.
 - Spreadsheet functions of sum, delta, percent, average, mean, standard deviation, and related functions applied to recorded data.
 - Charting, statistical, and display functions of standard Windowsbased spreadsheet.
- r. Report Generation: User commands initiate the reporting of a list of current alarm, supervisory, and trouble conditions in system or a log of past events.
 - Print a record of user-defined alarm, supervisory, and trouble events on workstation printer.
 - a) Sort and report by device name and by function.
 - b) Report type of signal (alarm, supervisory, or trouble), description, date, and time of occurrence.
 - c) Differentiate alarm signals from other indications.

- d) When system is reset, report reset event with same information concerning device, location, date, and time.
- 7. BACnet: Site Data Aggregation Device shall have demonstrated interoperability during at least one BMA Interoperability Workshop and shall substantially conform to BACnet Operator Workstation (B-OWS) device profile as specified in ASHRAE/ANSI 135-2001, BACnet Annex L
- Site Data Aggregation Device shall periodically upload metered data to the VA Corporate-wide server:
 - a. The metering software shall provide periodic upload (adjustable interval, initially set on 15-minute intervals) of the scrubbed and collected data.
 - b. The VA's Corporate wide server accepts the following data structures:
 - 1) Information structured using the 2005 and 2008 SQL server database engine.
 - 2) The following data stores are acceptable:
 - a) Databases: SQL Server, DB2, Oracle, Access, Sybase, MySQL.
 - b) Flat files: .CSV, .XLS, .TXT, .XML, .PQDIF
 - c. The minimum data to be uploaded (per meter) includes:
 - 1) A time stamp.
 - 2) A device identifier
 - 3) A flow (power or water flow) value
 - 4) A flow order of magnitude
 - 5) Description of the flow's units
 - 6) The outside air drybulb temperature at the time stamp
 - 7) The outside air wetbulb temperature at the time stamp
 - 8) A "scrubbed data" flag
 - 9) An irregular data alarm stamp
- C. Self-contained uninterruptible power supply (UPS):
 - 1. Size: Provide a minimum of six hours of operation of workstation station equipment, including two hours of alarm printer operation.
 - 2. Batteries: Sealed, valve regulated, recombinant, lead calcium.
 - 3. Accessories:
 - a. Transient voltage suppression.
 - b. Input-harmonics reduction.
 - c. Rectifier/charger.
 - d. Battery disconnect device.

25 10 10 - 25

- e. Static bypass transfer switch.
- f. First six subparagraphs below are optional accessories.
- g. Internal maintenance bypass/isolation switch.
- h. External maintenance bypass/isolation switch.
- i. Output isolation transformer.
- j. Remote UPS monitoring.
- k. Battery monitoring.
- 1. Remote battery monitoring.

2.3 CABLE SYSTEMS - TWISTED PAIR AND FIBER OPTIC

- A. General:
 - All metallic cable sheaths, etc. (i.e.: risers, underground, station wiring, etc. shall be grounded.
 - 2. Install temporary cable and wire pairs so as to not present a pedestrian safety hazard. Provide for all associated work for any temporary installation and for removal when no longer necessary. Temporary cable installations are not required to meet Industry Standards; but must be reviewed and approved by the VA prior to installation.
 - 3. Cable conductors to provide protection against induction in circuits. Crosstalk attenuation within the System shall be in excess of -80 dB throughout the frequency ranges specified.
 - 4. Minimize the radiation of RF noise generated by the System equipment so as not to interfere with audio, video, data, computer main distribution frame (MDF), telephone customer service unit (CSU), and electronic private branch exchange (EPBX) equipment the System may service.
 - 5. The as-installed drawings shall identify each cable as labeled, used cable, and bad cable pairs.
 - 6. Label system's cables on each end. Test and certify cables in writing to the VA before conducting proof-of-performance testing. Minimum cable test requirements are for impedance compliance, inductance, capacitance, signal level compliance, opens, shorts, cross talk, noise, and distortion, and split pairs on all cables in the frequency ranges specified. The cable tests shall demonstrate the operation of this cable at not less than 10 mega (m) Hertz (Hz) full bandwidth, fully channel loaded and a Bit Error Rate of a minimum of 10-6 at the maximum rate of speed. Make available all cable installation and test records at acceptance testing by the VA and shall thereafter be maintained in

the Facility's Telephone Switch Room. All changes (used pair, failed pair, etc.) shall be posted in these records as the change occurs.

- 7. Coordinate with the Electrical Contractor to install the telephone entrance cable to the nearest point of entry into the Facility and as shown on the drawings. Coordinate with the VA and the Electrical Contractor to provide all cable pairs/circuits from the Facility point of entry to the Telephone Switch Room all telephone, FTS, DHCP, ATM, Frame Relay, data, pay stations, patient phones, and any low voltage circuits as described herein.
- 8. Provide all cable pairs/circuits from the Server Room and establish circuits throughout the Facility for all cabling as described herein.
- 9. Provide proper test equipment to demonstrate that cable pairs meet each OEM's standard transmission requirements and guarantee the cable will carry data transmissions at the required speeds, frequencies, and fully loaded bandwidth.
- B. LAN COPPER CABLES
 - 1. Comply with Section 27 15 00 "Communications Horizontal Cabling."
 - 2. RS-485 Cable:
 - a. PVC-Jacketed, RS-485 Cable: Paired, 2 pairs, twisted, No. 22 AWG, stranded (7x30) tinned copper conductors, PVC insulation, unshielded, PVC jacket, and NFPA 70, Type CMG.
 - 3. Unshielded Twisted Pair Cables: Category 5e or 6 as specified for horizontal cable for data service in Section 27 15 00 "Communications Horizontal Cabling."
 - 4. Cabling products shall be tested and certified for use at data speeds up to at least 100 Mbps. Other types of media commonly used within IEEE Std 802.3 LANs (e.g., 10Base-T and 10Base-2) shall be used only in cases to interconnect with existing media. Short lengths of media and transceivers may be used in these applications. Provide separately orderable media, taps and connectors.
 - 5. Ethernet Switch shall be IEEE Std 802.3 bridges which shall function as the center of a distributed-star architecture and shall be "learning" bridges with spanning tree algorithms in accordance with IEEE Std 802.1D. The switch shall support the connected media types and shall have a minimum of 150% the required ports and no fewer than 4 ports. One port shall be switch selectable as an uplink port.
- Provide IP router network equipment. The routers shall be fully configurable for protocol types, security, and routing selection of sub-networks. The router shall meet all requirements of RFC 1812.
- C. LAN FIBER OPTICAL CABLES
 - 1. Interior Fiber Optic Cable: Interior Fiber Optic Cable shall be Multimode or Singlemode fiber, 62.5/125 micron for multimode or 10/125 micron for singlemode micron with SC or ST connectors as specified in TIA-568-C.1. Terminations, patch panels, and other hardware shall be compatible with the specified fiber and shall be as specified in Section 27 15 00 "Communications Horizontal Cabling." The data communications equipment shall use the 850-nm range of multimode or 1310-nm range of singlemode fiber-optic cable. Fiber-optic cable shall be suitable for use with the 100Base-FX standard as defined in IEEE Std 802.3.
 - 2. Exterior Fiber Optic Cable: Exterior Fiber Optic Cable shall be Multimode or Singlemode Fiber, 62.5/125 micron for multimode or 10/125 micron for singlemode micron with SC or ST connectors as specified in TIA-568-C.1. Terminations, patch panels, and other hardware shall be compatible with the specified fiber and shall be as specified in Section 27 15 00 "Communications Horizontal Cabling.". The data communications equipment shall use the 850-nm range of multimode or 1310-nm range of singlemode fiber-optic cable. Fiber-optic cable shall be suitable for use with the 100Base-FX standard as defined in IEEE Std 802.3.
 - 3. Fiber Optic Patch Panels shall be wall or rack mountable and designed to provide termination facilities for up to 24 fibers. Unit shall also have capability to be equipped with spliced trays, six packs (for adapters), and blank panels for easy termination of the fiber bundles and tube cables. Fiber-optic terminating equipment shall provide for mounting of ST or SC connectors on an optical patch panel. Provide fiber-cable management and cable-routing hardware to assure conformance to minimum fiber and cable bend radii. Connectors on the patch panel shall be ST or SC feed through. Provide access to both sides of the panel. The patch panel for the connectors shall be mounted to facilitate rearrangement and identification. Each apparatus shall have cabling and connection instructions associated with it.

- 4. Fiber Optic media converter shall provide media conversion between layer 1 copper and fiber media to support data rates equal to the greater of the physical layer or 100 Mbps as specified in IEEE Std 802.3.
- D. LOW-VOLTAGE WIRING
 - Low-Voltage Control Cable: Multiple conductor, color-coded, No. 20 AWG copper, minimum.
 - a. Sheath: PVC; except in plenum-type spaces, use sheath listed for plenums.
 - b. Ordinary Switching Circuits: Three conductors, unless otherwise indicated.
 - c. Switching Circuits with Pilot Lights or Locator Feature: Five conductors, unless otherwise indicated.
- E. WIRELESS MODEMS
- F. Provide wireless modems for high speed, point-to-point Ethernet communications between sites. Transceivers shall be single integral units and may be mounted within the building in a NEMA 1 enclosure or weatherproof with integral antenna and pole mounted. System shall have the following features as a minimum:
 - 1. 4.9x GHz Licensed Frequency
 - 2. Obtain FCC license on behalf of the VA for each licensed frequency.
 - 3. Security protocol shall utilize a minimum of 128-bit data encryption. Provide Simple Network Management Protocol (SNMP) for network diagnostics and management. Transceiver shall have status indicators for power, ethernet link status and RF link status.
 - Operating Conditions: 0 degrees C to 55 degrees C, 85% relative humidity (32 degrees F to 131 degrees F, 85% relative humidity).
 - 5. Transmitter/Receiver/Antenna combination shall provide less than 0.005% frame error rate at 10Mbps data rate between sites.
 - 6. Antennas may be omni-directional or directional as required for system gain. Antennas and supports shall withstand a combined load of ½" ice and 125mph wind loading.
 - Provide heavy-duty antenna masks and wall roof mask mount to support antennas. All hardware shall be stainless steel. Ground antenna mast per NFPA 780.
 - Coaxial cable shall be 0.200 diameter minimum for lengths below 50' and
 0.400 diameter or greater for length greater than 50'.

Tuscaloosa VAMC Correct Failing Sanitary Sewer, Water Main, FP Deficiencies 100% Construction Documents Tuscaloosa, AL 35404

9. Surge suppressors for coaxial cables shall be rated for the frequency of operation, utilize gas tube technology, and have a maximum let thru of 1mJ. Provide UL1449 listed, Type 1, 50kA, 120V, surge protective device for each power circuit.

2.4 GROUNDING

A. Ground cable shields, drain conductors, and equipment to eliminate shock hazard and to minimize ground loops, common-mode returns, noise pickup, cross talk, and other impairments. Comply with VA 27 05 26 Grounding and Bonding for Communications Systems and with VA 26 05 26 Grounding and Bonding for Electrical Systems.

METER COMMUNICATION 2.5

- A. Provide a BACNet network allowing communication from the meters' data heads to the Site Data Aggregation Device.
- B. Provide data heads at each meter, converting analog and pulsed information to digital information. Data heads shall allow for up to 24 hours of data storage (including time stamp, measured value, and scaling factor).
 - 1. Each data head shall reside on a BACnet network using the MS/TP Data Link/Physical layer protocol. Each data head shall have a communication port for connection to an operator interface.
 - 2. Environment: Data Head hardware shall be suitable for the conditions ranging from -29°C to 60°C (-20°F to 140°F). Data Heads used outdoors and/or in wet ambient conditions shall be mounted within waterproof enclosures and shall be rated for operation at conditions ranging from -29°C to 60°C (-20°F to 140°F).
 - Provide a local keypad and display for interrogating and editing 3. data. An optional system security password shall be available to prevent unauthorized use of the keypad and display.
 - 4. Serviceability. Provide diagnostic LEDs for power, communication, and processor. All wiring connections shall be made to field-removable, modular terminal strips or to a termination card connected by a ribbon cable.
 - 5. Memory. The building controller shall maintain all BIOS and data in the event of a power loss for at least 72 hours.
 - 6. Immunity to power and noise. Controller shall be able to operate at 90% to 110% of nominal voltage rating and shall perform an orderly shutdown below 80% nominal voltage. Operation shall be protected against

electrical noise of 5 to 120 Hz and from keyed radios up to 5 W at 1 m (3 ft).

2.6 ELECTRICAL POWER METERS AND SUB-METERS

- A. Meter accuracy:
 - 1. Comply with ANSI C12.20, Class 0.5; and IEC 60687, Class 0.5 for revenue meters.
 - 2. Accuracy from Light to Full Rating:
 - a. Power: Accurate to 0.5 percent of reading.
 - b. Voltage and Current: Accurate to 0.5 percent of reading.
 - c. Power Factor: Plus or minus 0.005, from 0.5 leading to 0.5 lagging.
 - d. Frequency: Plus or minus 0.01 Hz at 45 to 67 Hz.
- B. Meter input, sampling, display, output, recording and reading Capabilities
 - 1. Input: One digital input signal.
 - a. Normal mode for on/off signal.
 - b. Demand interval synchronization pulse, accepting a demand synchronization pulse from a utility demand meter.
 - c. Conditional energy signal to control conditional energy accumulation.
 - d. GPS time synchronization.
 - 2. 2. Sampling:
 - a. Current and voltage shall be digitally sampled at a rate high enough to provide accuracy to 63rd harmonic of 60-Hz fundamental.
 - b. Power monitor shall provide continuous sampling at a rate of 128 samples per cycle on all voltage and current channels in the meter.
 - 3. Display Monitor:
 - a. Backlighted LCD to display metered data with touchscreen or touchpad selecting device.
 - b. Touch-screen display shall be a minimum 12-inch diagonal, resolution of 800 by 600 RGB pixels, 256 colors; NEMA 250, Type 1 display enclosure.
 - c. Display four values on one screen at same time.
 - Coordinate list below with meter capabilities specified in subparagraphs above.
 - 2) Current, per phase rms, three-phase average and neutral.
 - 3)Voltage, phase to phase, phase to neutral, and three-phase averages
 - of phase to phase and phase to neutral.
 - 4)Real power, per phase and three-phase total.

5)Reactive power, per phase and three-phase total.

6) Apparent power, per phase and three-phase total.

7) Power factor, per phase and three-phase total.

8) Frequency.

9) Demand current, per phase and three-phase average.

10) Demand real power, three-phase total.

11) Demand apparent power, three-phase total.

12) Accumulated energy (MWh and MVARh).

13) THD, current and voltage, per phase.

d. Reset: Allow reset of the following parameters at the display:

- 1) Peak demand current.
- 2) Peak demand power (kW) and peak demand apparent power (kVA).

3) Energy (MWh) and reactive energy (MVARh).

4. Outputs:

- a. Operated either by user command sent via communication link or set to operate in response to user-defined alarm or event.
- b. Closed in either a momentary or latched mode as defined by user.
- c. Each output relay used in a momentary contact mode shall have an independent timer that can be set by user.
- d. One digital KY pulse to a user-definable increment of energy measurement. Output ratings shall be up to 120-V ac, 300-V dc, 50 mA, and provide 3500-V rms isolation.
- e. One relay output module, providing a load voltage range from 20- to 240-V ac or from 20- to 30-V dc, supporting a load current of 2 A.
- f. Output Relay Control:
 - Relay outputs shall operate either by user command sent via communication link or in response to user-defined alarm or event.
 - Normally open and normally closed contacts, field configured to operate as follows:
 - a) Normal contact closure where contacts change state for as long as signal exists.
 - b) Latched mode when contacts change state on receipts of a pickup signal; changed state is held until a dropout signal is received.
 - c) Timed mode when contacts change state on receipt of a pickup signal; changed state is held for a preprogrammed duration.

- d) End of power demand interval when relay operates as synchronization pulse for other devices.
- e) Energy Pulse Output: Relay pulses quantities used for absolute kWh, absolute kVARh, kVAh, kWh In, kVARh In, kWh Out, and kVARh Out.
- f) Output controlled by multiple alarms using Boolean-type logic.
- 5. Onboard Data Logging:
 - a. Store logged data, alarms, events, and waveforms in 2 MB of onboard nonvolatile memory.
 - b. Stored Data:
 - Billing Log: User configurable; data shall be recorded every 15 minutes, identified by month, day, and 15-minute interval. Accumulate 24 months of monthly data, 32 days of daily data, and between 2 to 52 days of 15-minute interval data, depending on number of quantities selected.
 - 2) Custom Data Logs: three user-defined log(s) holding up to 96 parameters. Date and time stamp each entry to the second and include the following user definitions:
 - a) Schedule interval.
 - b) Event definition.
 - c) Configured as "fill-and-hold" or "circular, first-in firstout."
 - Alarm Log: Include time, date, event information, and coincident information for each defined alarm or event.
 - 4) Waveform Log: Store captured waveforms configured as "fill-andhold" or "circular, first-in first-out."
 - c. Default values for all logs shall be initially set at factory, with logging to begin on device power up.
- 6. Alarms.

a. User Options:

- 1) Define pickup, dropout, and delay.
- Assign one of four severity levels to make it easier for user to respond to the most important events first.
- Allow for combining up to four alarms using Boolean-type logic statements for outputting a single alarm.
- b. Alarm Events:
 - 1) Over/undercurrent.

Tuscaloosa VAMC Correct Failing Sanitary Sewer, Water Main, FP Deficiencies 100% Construction Documents Tuscaloosa, AL 35404

- 2) Over/undervoltage.
- 3) Current imbalance.
- 4) Phase loss, current.
- 5) Phase loss, voltage.
- 6) Voltage imbalance.
- 7) Over kW demand.
- 8) Phase reversal.
- 9) Digital input off/on.
- 10) End of incremental energy interval.
- 11) End of demand interval.

WATER, OIL, GAS METER DEVICES 2.7

- A. Water, oil and gas meter applications:
 - 1. Steam Meters: provide vortex-shedding flowmeters, along with temperature sensors and pressure transducers to develop the energy flow.
 - 2. Potable (Domestic) Water: provide a magnetic flowmeter in new installations; provide an ultrasonic or vortex-shedding flowmeter with pressure sensor in existing installations which service interruption is not allowed.
 - 3. Reclaimed (storm or gray): provide a magnetic flowmeter in new installations; provide a vortex-shedding flowmeter with pressure sensor in existing installations which service interruption is not allowed.
- B. Associated Devices (to provide outside air conditions as well as energy metering, not merely flow metering):
 - 1. Temperature Sensors: Resistance Temperature Device (RTD) with an integral transmitter type.
 - a. Immersion sensors shall be provided with a separable thermowell. Pressure rating of well is to be consistent with the system pressure in which it is to be installed.
 - b. Outdoor air temperature sensors shall have watertight inlet fittings and be shielded from direct sunlight.
 - c. Output Signal: 4-20 ma or digital.
 - 2. Humidity Sensors: Bulk polymer sensing element type.
 - a. Outdoor humidity sensors shall be furnished with element guard and mounting plate and have a sensing range of 0 to 100 percent RH.
 - b. Output Signal: 4-20 ma continuos output signal.
 - 3. Pressure sensors.

- a. Water Pressure Transmitters: Stainless-steel diaphragm construction, suitable for service; minimum 150-psig operating pressure and tested to 300-psig; linear output 4 to 20 mA.
- 4. Thermowells.
 - a. Description: Pressure-tight, socket-type fitting made for insertion into piping tee fitting. Stepped shank unless straight or tapered shank is indicated. ASME B40.200. Bore diameter required to match thermometer bulb or stem. Insertion length required to match thermometer bulb or stem. Provide a lagging extension on thermowells for insulated piping and tubing. Provide bushings. Use a mixture of graphite and glycerin for the thermowell's heat transfer medium.
 - 1) Material for Use with Copper Tubing: copper nickel (90-10).
 - 2) Material for Use with Steel Piping: stainless steel.

PART 3 - EXECUTION

3.1 INSTALLATION REQUIREMENTS

- A. Cabling
 - 1. Install Category 5e UTP, Category 6 UTP, and optical fiber cabling system as detailed in TIA-568-C.1, TIA/EIA-568-B.2, or TIA-568-C.3.
 - Screw terminals shall not be used except where specifically indicated on plans.
 - 3. Use an approved insulation displacement connection (IDC) tool kit for copper cable terminations.
 - Do not untwist Category 5e, Category 6 UTP cables more than 12 mm (1/2 inch) from the point of termination to maintain cable geometry.
 - 5. Provide service loop on each end of the cable, 3 m (10 feet) at the server rack and 304 mm (12 inches) at the meter.
 - Do not exceed manufacturers' cable pull tensions for copper and optical fiber cables.
 - 7. 7. Provide a device to monitor cable pull tensions. Do not exceed 110
 N (25 pounds) pull tension for four pair copper cables.
 - 8. Do not chafe or damage outer jacket materials.
 - Use only lubricants approved by cable manufacturer.
 Do not over cinch cables, or crush cables with staples.
 - 10. For UTP cable, bend radii shall not be less than four times the cable diameter.

- 11. Cables shall be terminated; no cable shall contain unterminated elements.
- 12. Cables shall not be spliced.

13. Label cabling in accordance with paragraph Labeling in this section.

- B. Labeling
 - Labels: Provide labeling in accordance with TIA/EIA-606-A. Handwritten labeling is unacceptable. Stenciled lettering for all circuits shall be provided using laser printer.
 - 2. Cables: Cables shall be labeled using color labels on both ends with identifiers in accordance with TIA/EIA-606-A.
- C. Grounding: ground exposed, non-current-carrying metallic parts of electrical equipment, metallic raceway systems, grounding conductor in metallic and nonmetallic raceways, telecommunications system grounds, and grounding conductor of nonmetallic sheathed cables, as well as equipment to eliminate shock hazard and to minimize ground loops, common-mode returns, noise pickup, cross talk, and other impairments. Comply with VA 27 05 26 GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS and with VA 26 05 26 GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS.
- D. Surge Protection
 - Provide surge protective devices on all metallic cables entering and leaving an interior environment to an exterior environment or vice versa, i.e., surge protective device at each interior location of a penetration to the exterior environment.
- E. Network Hardware
 - System components and appurtenances shall be installed in accordance with the manufacturer's instructions. Necessary interconnections, services, and adjustments required for a complete and operable wired or wireless data transmission system shall be provided and shall be fully integrated with the configured network chosen for the project.
- F. Computer Hardware
 - Provide the server(s) or personal computer workstation(s) where shown on the plans or indicated diagrammatically.
- G. Computer Software
 - User friendly software shall be suitable for operation on computer workstations which serve as site data aggregation devices by monitoring the meters in the system, recording events, indicating alarm conditions, and logging and displaying system reports.

- 2. The software shall be developed by the manufacturer of the monitoring devices, and shall be designed specifically for energy, power monitoring and control. Additional utilities, i.e., water, air gas, electric and steam shall also be easily integrated.
- 3. The software shall be configured, not programmed. All software shall be configured by the vendor and delivered ready to use. This configuration shall include preparation of all graphics, displays, and interactive one-line diagrams required as a part of this project.
 - a. Configuration shall be to the point that when monitoring devices are required to be added, the user shall only convey to the software the communications address and type of device.
- The software shall be a standard product offering with no customization required and clients shall interface with the server or computer workstation via Internet Explorer browser.
 - a. The web-enabled interactive graphics client shall only reside on the server PC, client PC not required to host any application software other than Internet Explorer 6.0 SP1 or higher browser to become a fully functional system.
- H. Water, Oil and Gas Meters
 - 1. Thermowells
 - a. Install thermowells with socket extending a minimum of 2 inches into fluid or one-third of pipe diameter and in vertical position in piping tees.
 - b. Install thermowells of sizes required to match temperature sensor connectors. Include bushings if required to match sizes.
 - c. Install thermowells with extension on insulated piping.
 - d. Fill thermowells with heat-transfer medium.
 - 2. Provide a test plug beside each temperature sensor.
 - 3. Flow meters, general
 - a. Install meters and gages adjacent to machines and equipment to allow service and maintenance of meters, gages, machines, and equipment.
 - b. Connect flowmeter-system elements to meters, connect flowmeter transmitters to meters, and connect thermal-energy meter transmitters to meters.
 - c. Assemble and install connections, tubing, and accessories between flow-measuring elements and flowmeters according to manufacturer's written instructions.

25 10 10 - 37

- d. Install flowmeter elements in accessible positions in piping systems.
- e. Install flowmeter, with minimum 20 x pipe diameter straight lengths of pipe upstream and minimum 10 x pipe diameter straight lengths of pipe downstream from flowmeter unless otherwise indicated by manufacturer's written instructions.
- f. Mount thermal-energy meters on wall if accessible; if not, provide brackets to support meters.

3.2 ADJUSTING AND IDENTIFICATION

- A. Install a permanent wire marker on each wire at each termination.
- B. Identifying numbers and letters on the wire markers shall correspond to those on the wiring diagrams used for installing the systems.
- C. Wire markers shall retain their markings after cleaning.

3.3 FIELD QUALITY CONTROL

- A. The power monitoring and control system vendor must be able to provide development, integration and installation services required to complete and turn over a fully functional system including:
 - Project management to coordinate personnel, information and on-site supervision for the various levels and functions of suppliers required for completion of the project.
 - All technical coordination, installation, integration, and testing of all components.
 - 3. Detailed system design and system drawings.
- B. Cabling, equipment, and hardware manufacturers shall have a minimum of 5 years experience in the manufacturing, assembly, and factory testing of components which comply with EIA TIA/EIA-568-B.1, EIA TIA/EIA-568-B.2 and EIA TIA/EIA-568-B.3.
- C. The network cabling contractor shall be a firm which is regularly and professionally engaged in the business of the applications, installation, and testing of the specified network cabling systems and equipment. The contractor shall demonstrate experience in providing successful systems within the past 3 years. Submit documentation for a minimum of three and a maximum of five successful network cabling system installations.
 - Supervisors and installers assigned to the installation of this system or any of its components shall be Building Industry Consulting Services International (BICSI) Registered Cabling Installers, Technician Level.

Submit documentation of current BICSI certification for each of the key personnel.

3.4 ACCEPTANCE TESTING

- A. Develop testing procedures to address all specified functions and components of the Advanced Utility Metering System (AUMS). Testing shall demonstrate proper and anticipated responses to normal and abnormal operating conditions.
 - 1. Provide skilled technicians to start and operate equipment.
 - 2. Coordinate with equipment manufacturers to determine specific requirements to maintain the validity of the warranty.
 - 3. Correct deficiencies and make necessary adjustments to O&M manuals and as-built drawings for issues identified in testing.
 - Provide all tools to start, check-out and functionally test equipment and systems.
 - 5. Correct deficiencies and make necessary adjustments to O&M manuals and as-built drawings for issues identified in any testing
 - 6. Review test procedures, testing and results with Government.
- B. Testing checklists: Develop project-specific checklists to document the systems and all components are installed in accordance with the manufacturers recommendation and the Contract Documents.
- C. Before testing, the following prerequisite items must be completed.
 - All related equipment has been started and start-up reports and checklists submitted and approved as ready for testing:
 - 2. All associated system functions for all interlocking systems are programmed and operable per contract documents.
 - 3. All punch list items for the AUMS and equipment are corrected.
 - 4. 4. The test procedures reviewed and approved.
 - 5. 5. Safeties and operating ranges reviewed.
- D. The following testing shall be included:
 - Demonstrate reporting of data and alarm conditions for each point and ensure that alarms are received at the assigned location, including Site Data Collection Device.
 - 2. Demonstrate ability of software program to function for the intended application.
 - 3. Demonstrate via graphed trends to show the reports are executed in correct manner.

- 4. Demonstrate that the meter readings are accurate using portable NIST traceable portable devices and calibrated valves in the piping system
- 5. Demonstrate that the systems perform during power loss and resumption of power.
- E. Copper cables: Contractor shall provide all necessary testing equipment to test all copper network circuit cables. Tests shall conform to EIA/TIA 568B Permanent Link testing criteria. All testers are to be EIA/TIA 568B, Level IIe compliant. The primary field test parameters are:
 - Wire map: The wire map test is intended to verify pair to pin termination at each end and check for installation connectivity errors. For each of the conductors in the cable, the wire map indicates:
 - a. Continuity to the remote end
 - b. Shorts between any two or more conductors
 - c. Crossed pairs
 - d. Reversed pairs
 - e. Split pairs
 - f. Any other mis-wiring
 - Length requirements: The maximum physical length of the basic link shall be 94 meters (including test equipment cords).
 - 3. Insertion Loss: Worst case insertion loss relative to the maximum insertion loss allowed shall be reported.
 - 4. Near-end crosstalk (NEXT) loss: Field tests of NEXT shall be performed at both ends of the test configuration.
 - 5. Power sum near-end crosstalk (PSNEXT) loss
 - 6. Equal-level far-end crosstalk (ELFEXT: Field tests of ELFEXT shall be performed at both ends of the test configuration
 - 7. Power sum equal-level far-end crosstalk (PSELFEXT): Must be determined from both ends of the cable. Power sum Near End Crosstalk is not a category 3 parameter. For all frequencies from 1 to 100 MHz, the category 5e PSELFEXT of the cabling shall be measured in accordance with annex E of ANSI/TIA/EIA-568-B.2 and shall meet the values determined using equations (12) and (13) for the permanent link. PSELFEXT is not a required category 3 measurement parameter.
 - Return loss: Includes all the components of the link. The limits are based on the category of components and cable lengths. Return loss must be tested at both ends of the cable. Cabling return loss is not a required measurement for category 3 cabling.

- 9. Propagation delay and delay skew: Propagation delay is the time it takes for a signal to propagate from one end to the other. Propagation delay shall be measured in accordance with annex D of ANSI/TIA/EIA-568 B.2. The maximum propagation delay for all category permanent link configurations shall not exceed 498 ns measured at 10 MHz. Delay skew is a measurement of the signaling delay difference from the fastest pair to the slowest. Delay skew shall be measured in accordance with annex D of ANSI/TIA/EIA-568-B.2. The maximum delay skew for all category permanent link configurations shall not exceed 498 ns.
- 10. Administration: In addition to Pass/Fail indications, measured values of test parameters should be recorded in the administration system. Any reconfiguration of link components after testing may change the performance of the link and thus invalidates previous test results. Such links shall require retesting to regain conformance.
- 11. Test equipment connectors and cords: Adapter cords that are qualified and determined by the test equipment manufacturer to be suitable for permanent link measurements shall be used to attach the field tester to the permanent link under consideration.
- 12. Test setup: The permanent link test configuration is to be used by installers and users of data telecommunications systems to verify the performance of permanently installed cabling. A schematic representation of the permanent link is illustrated in figure 1. The permanent link consists of up to 90 m (295 ft) of horizontal cabling and one connection at each end and may also include an optional transition/consolidation point connection. The permanent link excludes both the cable portion of the field test instrument cord and the connection to the field test instrument.
- Replace or repair and cables, connectors, and/or terminations found to be defective.
- 14. Repair, replace, and/or re-work any or all defective components to achieve cabling tests which meet or exceed 568B permanent link requirements prior to acceptance of the installation or payment for services.
- F. Optical Fiber cables: Contractor shall provide all necessary testing equipment to test all optical fiber cables.
 - 1. Attenuation Testing:

Tuscaloosa VAMC Correct Failing Sanitary Sewer, Water Main, FP Deficiencies 100% Construction Documents Tuscaloosa, AL 35404

- December 29, 2023 Project No: 679-21-102
- a. Singlemode testing shall conform to TIA/EIA 526-7 Method A.1 single jumper reference and TIA/EIA 568-B-1 requirements for link segment testing.
- b. Multimode testing shall conform to TIA/EIA 526-14-A Method B single jumper reference and TIA/EIA 568-B-1 requirements for link segment testing.
- c. Attenuation testing shall be performed in one direction at each operating wavelength.
- d. Testing of backbone fiber optic cabling shall be performed from main telecommunications room to each telecommunications room.
- e. Testing of horizontal fiber optic cabling shall be performed from telecommunications room to station outlet location.
- f. Tester shall be capable of recording and reporting test reading in an electronic format.
- 2. OTDR Testing:
 - a. OTDR testing is required on all backbone fiber optic cables
 - b. The test shall be performed as per the EIA/TIA 455-61.
 - c. Multimode testing shall be performed with a minimum 80 meter launch cable.
 - d. Singlemode testing shall be performed with a minimum of 500 meter launch cable.
 - e. Tests shall be performed on each fiber in each direction at both operating wavelengths.
- 3. Test report data shall reference cables by cable labeling standards. Tests shall be submitted on a 1.5mb, 3.5" DOS formatted floppy disk. Contractor shall provide tests in the native file format of the tester. Contractor shall provide all software needed to view, print, and edit tests.
- 4. Replace or repair and defective cables, connectors, terminations, etc.
- 5. Mated connector pairs shall have no more than 0.5dB loss. Fusion splices shall have no more than .15dB loss per splice. Cable attenuation shall be no more than 2% more than the attenuation of the cable on the reel as certified at the factory. Repair, replace, and/or rework any or all defective components to achieve specified test results prior to acceptance of the installation or payment for services.

G. Wireless Modems: Test system by sending 100,000 commands. Frame error rate shall not be greater than 5 out 100,000 commands.

3.5 DEMONSTRATION AND INSTRUCTION

- A. Furnish the services of a factory-trained engineer or technician for a total of two four-hour classes to instruct designated Facility Information Technologies personnel. Instruction shall include cross connection, corrective, and preventive maintenance of the wired network system and connectivity equipment.
- B. Before the System can be accepted by the VA, this training must be provided and executed. Training will be scheduled at the convenience of the Facilities Contracting Officer and Chief of Engineering Service.
- C. On-site start-up and training of the advanced utility metering system shall include a complete working demonstration of the system with simulation of possible operating conditions that may be encountered.
 - Include any documentation and hands-on exercises necessary to enable electrical and mechanical operations personnel to assume full operating responsibility for the advanced utility monitoring system after completion of the training period.
- D. Include 6 days on-site start-up assistance and 3 days on-site training in two sessions separated by minimum 1 month.
- E. Regularly schedule and make available factory training for VA staff training on all aspects of advanced utility metering system including:
 - Comprehensive software and hardware setup, configuration, and operation.
 - 2. Advanced monitoring and data reporting.
 - 3. Advanced power quality and disturbance monitoring.
- F. Before the system is accepted by the VA, the contractor shall walk-through the installation with the VA's representative and the design engineer to verify proper installation. The contractor may be requested to open enclosures and terminal compartments to verify cable labeling and/or installation compliance.
- G. As-built drawings shall be provided noting the exact cable path and cable labeling information. Drawings in .DWG format will be available to the contractor. As-builts shall be submitted to the VA on disk saved as .DXF or .DWG files. Redline hardcopies shall be provided as well. CAD generated as-built information shall be shown on a new layer named AS BUILT.

----- END -----

SECTION 31 20 11 EARTHWORK (SHORT FORM)

PART 1 - GENERAL

1.1:DESCRIPTION:

This section specifies the requirements for furnishing all equipment, materials, labor, and techniques for earthwork including excavation, fill, backfill and site restoration utilizing fertilizer, seed and/or sod.

1.2 DEFINITIONS:

- A. Unsuitable Materials:
 - 1. Fills: Topsoil, frozen materials; construction materials and materials subject to decomposition; clods of clay and stones larger than 75 mm (3 inches); organic materials, including silts, which are unstable; and inorganic materials, including silts, too wet to be stable.
 - 2. Existing Subgrade (except footings): Same materials as above paragraph, that are not capable of direct support of slabs, pavement, and similar items, with the possible exception of improvement by compaction, proofrolling, or similar methods of improvement.
 - 3. Existing Subgrade (footings only): Same as Paragraph 1, but no fill or backfill. If materials differ from reference borings and design requirements, excavate to acceptable strata subject to Resident Engineer's approval.
- B. Earthwork: Earthwork operations required within the new construction area. It also includes earthwork required for auxiliary structures and buildings and sewer and other trenchwork throughout the job site.
- C. Degree of Compaction: Degree of compaction is expressed as a percentage of maximum density obtained by the test procedure presented in ASTM D1557
- D. The term fill means fill or backfill as appropriate.

1.3 RELATED WORK:

- A. Materials testing and inspection during construction: Section 01 45 29, TESTING LABORATORY SERVICES.
- B. SECTION 01 35 26 SAFETY REQUIREMENTS

1.4 CLASSIFICATION OF EXCAVATION:

A. Unclassified Excavation: Removal and disposal of pavements and other manmade obstructions visible on the surface; utilities, and other items including underground structures indicated to be demolished and removed; together with any type of materials regardless of character of material and obstructions encountered.

31 20 11 - 1

- B. Classified Excavation: Removal and disposal of all material not defined as rock.
- C. Rock Excavation:
 - 1. Solid ledge rock (igneous, metamorphic, and sedimentary rock).
 - 2. Bedded or conglomerate deposits so cemented as to present characteristics of solid rock which cannot be excavated without blasting; or the use of a modern power excavator (shovel, backhoe, or similar power excavators) of no less than 0.75 m3 (1 cubic yard) capacity, properly used, having adequate power and in good running condition.
 - 3. Boulders or other detached stones each having a volume of 0.4 m3 (1/2 cubic yard) or more.

1.5 MEASUREMENT AND PAYMENT FOR EXCAVATION:

Measurement: The unit of measurement for excavation and borrow will be the cubic yard, computed by the average end area method from cross sections taken before and after the excavation and borrow operations, including the excavation for ditches, gutters, and channel changes, when the material is acceptably utilized or disposed of as herein specified. Quantities should be computed by a Registered Professional Land Surveyor or Registered Civil Engineer, specified in Section 01 00 00, GENERAL REQUIREMENTS. The measurement will include authorized excavation of satisfactory subgrade The measurement will not include the volume of subgrade material or other material used for purposes other than directed. The volume of overburden stripped from borrow pits and the volume of excavation for ditches to drain borrow its, unless used as borrow material, will not be measured for payment. The measurement will not include the volume of any excavation performed prior to taking of elevations and measurements of the undisturbed grade.

1.6 MEASUREMENT AND PAYMENT FOR ROCK EXCAVATION:

- A. Measurement: Cross section and measure the uncovered and separated materials, and compute quantities by the Registered Professional Land Surveyor or Registered Civil Engineer, specified in Section 01 00 00, GENERAL REQUIREMENTS. Do not measure quantities beyond the following limits:
 - 1. 300 mm (12 inches) outside of the perimeter of formed footings.
 - 2. 600 mm (24 inches) outside the face of concrete work for which forms are required, except for footings.

31 20 11 - 2

- 3. 150 mm (6 inches) below the bottom of pipe and not more than the pipe diameter plus 600 mm (24 inches) in width for pipe trenches.
- 4. The outside dimensions of concrete work for which no forms are required (trenches, conduits, and similar items not requiring forms).

1.7 SUBMITTALS:

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Rock Excavation Report:
 - 1. Certification of rock quantities excavated.
 - 2. Excavation method.
 - 3. Labor.
 - 4. Equipment.
 - 5. Land Surveyor's or Civil Engineer's name and official registration stamp.
 - 6. Plot plan showing elevations.
- C. Contractor shall submit procedure and location for disposal of unused satisfactory material. Proposed source of borrow material. Notification of encountering rock in the project. Advance notice on the opening of excavation or borrow areas. Advance notice on shoulder construction for rigid pavements.
- D. Qualifications of the commercial testing laboratory or Contractor's Testing facility shall be submitted.

1.8 APPLICABLE PUBLICATIONS:

- A. Publications listed below form a part of this specification to the extent referenced. Publications are referenced in the text by the basic designation only.
- B. American Nursery and Landscape Association (ANLA): 2004.....American Standard for Nursery Stock
- C. American Association of State Highway and Transportation Officials (AASHTO):

T99-10......Moisture-Density Relations of Soils Using a 2.5 kg (5.5 lb) Rammer and a 305 mm (12 inch) Drop T180-10.....Standard Method of Test for Moisture-Density Relations of Soils Using a 4.54-kg [10 lb] Rammer

and a 457 mm (18 inch) Drop

D. American Society for Testing and Materials (ASTM):

C33-03Co	oncrete Aggregate
D698-e1La	aboratory Compaction Characteristics of Soil
U	sing Standard Effort
D1140-00Ar	mount of Material in Soils Finer than the No. 200
(`	75-micrometer) Sieve
D1556-00St	tandard Test Method for Density and Unit Weight
03	f Soil in Place by the Sand-Cone Method
D1557-09La	aboratory Compaction Characteristics of Soil
U	sing Modified Effort
D2167-94 (2001)St	tandard Test Method for Density and Unit Weight
03	f Soil in Place by the Rubber Balloon Method
D2487-06St	tandard Classification of Soil for Engineering
Pi	urposes (Unified Soil Classification System)
D6938-10St	tandard Test Methods for Density of Soil and
S	oil-Aggregate in Place by Nuclear Methods
(:	Shallow Depth)

PART 2 - PRODUCTS

2.1 MATERIALS:

- A. Fills: Materials approved from on site and off site sources having a minimum dry density of 1760 kg/m3 (110 pcf), a maximum Plasticity Index of 6, and a maximum Liquid Limit of 30.
- B. Granular Fill:
 - 1. Under concrete slab, granular fill shall consist of clean, poorly graded crushed rock, crushed gravel, or uncrushed gravel placed beneath a building slab with or without a vapor barrier to cut off the capillary flow of pore water to the area immediately below. Fine aggregate grading shall conform to ASTM C33 with a maximum of 3 percent by weight passing ASTM D1140, 75 micrometers (No. 200) sieve, or 37.5 mm (1-1/2 inches) and no more than 2 percent by weight passing the 4.75 mm (No. 4) size sieve or coarse aggregate Size 57, 67, or 77.
 - Bedding for sanitary and storm sewer pipe, crushed stone or gravel graded from 13 mm (1/2 inch) to 4.75 mm (No. 4).
- C. Fertilizer: (5-10-5) delivered to site in unopened containers that clearly display the manufacturer's label, indicating the analysis of the contents.

- D. Seed: Grass mixture comparable to existing turf delivered to site in unopened containers that clearly display the manufacturer's label, indicating the analysis of the contents.
- E. Sod: Comparable species with existing turf. Use State Certified or State Approved sod when available. Deliver sod to site immediately after cutting and in a moist condition. Thickness of cut must be 19 mm to 32 mm (3/4 inch to 1 1/4 inches) excluding top growth. There shall be no broken pads and torn or uneven ends
- F. Requirements For Offsite Soils: Offsite soils brought in for use as backfill shall be tested for TPH, BTEX and full TCLP including ignitability, corrosivity and reactivity. Backfill shall contain less than 100 parts per million (ppm) of total hydrocarbons (TPH) and less than 10 ppm of the sum of Benzene, Toleune, Ethyl Benzene, and Xylene (BTEX) and shall not fail the TCLP test. TPH concentrations shall be determined by using EPA 600/4-79/020 Method 418.1. BTEX concentrations shall be determined by using EPA SW-846.3-3a Method5030/8020. TCLP shall be performed in accordance with EPA SW-846.3-3a Method 1311. Provide Borrow Site Testing for TPH, BTEX and TCLP from a composite sample of material from the borrow site, with at least one test from each borrow site. Material shall not be brought on site until tests have been approved by the Resident Engineer.
- G. Buried Warning and Identification Tape: Polyethylene plastic and metallic core or metallic-faced, acid- and alkali-resistant polyethylene plastic warning tape manufactured specifically for warning and identification of buried utility lines. Provide tape on rolls, 3 inch minimum width, color coded as specific below for the intended utility with warning and identification imprinted in bold black letters continuously over the entire tape length. Warning and identification to read, "CAUTION, BURIED (intended service) LINE BELOW" or similar wording. Color and printing shall be permanent, Unaffected by moisture or soil. Warning tape color codes:

Red:	Electric
Yellow:	Gas, Oil, Dangerous Materials
Orange:	Telephone and Other Communications
Blue:	Water Systems
Green:	Sewer Systems
White:	Steam Systems

Gray: Compressed Air

- H. Warning Tape for Metallic Piping: Acid and alkali-resistant polyethylene plastic tape conforming to the width, color, and printing requirements specified above. Minimum thickness of tape shall be 0.076 mm (0.003 inch). Tape shall have a minimum strength of 10.3 MPa (1500 psi) lengthwise, and 8.6 MPa (1250 psi) crosswise, with a maximum 350 percent elongation.
- I. Detectable Warning Tape for Non-Metallic Piping: Polyethylene plastic tape conforming to the width, color, and printing requirements specified above. Minimum thickness of the tape shall be 0.102 mm (0.004 inch). Tape shall have a minimum strength of 10.3 MPa (1500 psi) lengthwise and 8.6 MPa (1250 psi) crosswise. Tape shall be manufactured with integral wires, foil backing, or other means of enabling detection by a metal detector when tape is buried up to 0.9 m(3 feet) deep. Encase metallic element of the tape in a protective jacket or provide with other means of corrosion protection.
- J. Detection Wire For Non-Metallic Piping: Detection wire shall be Insulated single strand, solid copper with a minimum of 12 AWG.

PART 3 - EXECUTION

3.1 SITE PREPARATION:

- A. Clearing: Clearing within the limits of earthwork operations as described or designated by the Resident Engineer. Work includes removal of trees, shrubs, fences, foundations, incidental structures, paving, debris, trash, and any other obstructions. Remove materials from the Medical Center.
- B. Grubbing: Remove stumps and roots 75 mm (3 inches) and larger diameter. Undisturbed sound stumps, roots up to 75 mm (3 inches) diameter, and nonperishable solid objects which will be a minimum of 900 mm (3 feet) below subgrade or finished embankment may be left.
- C. Trees and Shrubs: Trees and shrubs, not shown for removal, may be removed from the areas within 4500 mm (15 feet) of new construction and 2250 mm (7'-6") of utility lines if such removal is approved in advance by the Resident Engineer. Remove materials from the Medical Center. Trees and shrubs, shown to be transplanted, shall be dug with a ball of earth and burlapped in accordance with the latest issue of the "American Standard for Nursery Stock", of the American Association of Nurserymen, Inc. Transplant trees and shrubs to a permanent or temporary position within

31 20 11 - 6

two hours after digging. Maintain trees and shrubs held in temporary locations by watering as necessary and feeding semi-annually with liquid fertilizer with a minimum analysis of 5 percent nitrogen, 10 percent phosphorus and 5 percent potash. Maintain plants moved to permanent positions for plants in temporary locations until the conclusion of the contract. Box, and otherwise protect from damage, existing trees and shrubs which are not shown to be removed in the construction area. Repair immediately damage to existing trees and shrubs by trimming, cleaning, and painting damaged areas, including the roots, in accordance with standard industry horticultural practice for the geographic area and plant species. Building materials shall not be stored closer to trees and shrubs that are to remain, than the farthest extension of their limbs.

- D. Stripping Topsoil: Unless otherwise indicated on the drawings, the limits of earthwork operations shall extend anywhere the existing grade is filled or cut or where construction operations have compacted or otherwise disturbed the existing grade or turf. Strip topsoil as defined herein, or as indicated in the geotechnical report, from within the limits of earthwork operations as specified above unless specifically indicated or specified elsewhere in the specifications or shown on the drawings. Topsoil shall be fertile, friable, natural topsoil of loamy character and characteristic of the locality. Topsoil shall be capable of growing healthy horticultural crops of grasses. Stockpile topsoil and protect as directed by the Resident Engineer. Eliminate foreign material, such as weeds, roots, stones, subsoil, frozen clods, and similar foreign materials, larger than 0.014 m3 (1/2 cubic foot) in volume, from soil as it is stockpiled. Retain topsoil on the station. Remove foreign materials larger than 50 mm (2 inches) in any dimension from topsoil used in final grading. Topsoil work, such as stripping, stockpiling, and similar topsoil work, shall not, under any circumstances, be carried out when the soil is wet so that the tilth of the soil will be destroyed.
 - Concrete Slabs and Paving: Score deeply or saw cut to insure a neat, straight cut, sections of existing concrete slabs and paving to be removed where excavation or trenching occurs. Extend pavement section to be removed a minimum of 300 mm (12 inches) on each side of widest part of trench excavation and ensure final score lines are approximately parallel unless otherwise indicated. Remove material from the Medical Center.

31 20 11 - 7

E. Disposal: All materials removed from the property shall be disposed of at a legally approved site, for the specific materials, and all removals shall be in accordance with all applicable Federal, State and local regulations. No burning of materials is permitted onsite.

3.2 EXCAVATION:

- A. Shoring, Sheeting and Bracing: Shore, brace, or slope to its angle of repose banks of excavations to protect workmen, banks, adjacent paving, structures, and utilities, in compliance with OSHA requirements.
 - Extend shoring and bracing to the bottom of the excavation. Shore
 excavations that are carried below the elevations of adjacent existing
 foundations.
 - 2. If the bearing of any foundation is disturbed by excavating, improper shoring or removal of shoring, placing of backfill, and similar operations, provide a concrete fill support in compliance with Specification Section 31 23 23.33, FLOWABLE FILL, under disturbed foundations, as directed by Resident Engineer, at no additional cost to the Government. Do not remove shoring until permanent work in excavation has been inspected and approved by Resident Engineer.
- B. Excavation Drainage: Operate pumping equipment, and/or provide other materials, means and equipment as required, to keep excavations free of water and subgrades dry, firm, and undisturbed until approval of permanent work has been received from Resident Engineer. Approval by the Resident Engineer is also required before placement of the permanent work on all subgrades. When subgrade for foundations has been disturbed by water, remove the disturbed material to firm undisturbed material after the water is brought under control. Replace disturbed subgrade in trenches by mechanically tamped sand or gravel. When removed disturbed material is located where it is not possible to install and properly compact disturbed subgrade material with mechanically compacted sand or gravel, the Resident Engineer should be contacted to consider the use of flowable fill. Groundwater flowing toward or into excavations shall be controlled to prevent sloughing of excavation slopes and walls, boils, uplift, and heave in the excavation and to eliminate interference with orderly progress of construction. French drains, sumps, ditches, or trenches will not be permitted within 0.9 m (3 feet) of the foundation of any structure, except with specific written approval, and after specific contractual provisions for restoration of the foundation area have been made. Control measures

shall be taken by the time the excavation reaches the water level in order to maintain the integrity of the in situ material. While the excavation is open, the water level shall be maintained continuously, at least 5 feet below the working level. Operate dewatering system continuously until construction work below existing water levels is complete. Submit performance records weekly. Relieve hydrostatic head in pervious zones below subgrade elevation in layered soils to prevent uplift.

- D. Building Earthwork:
 - Excavation shall be accomplished as required by drawings and specifications.
 - 2. Excavate foundation excavations to solid undisturbed subgrade.
 - 3. Remove loose or soft material to solid bottom.
 - Fill excess cut under footings or foundations with 25 MPa (3000 psi) concrete, poured separately from the footings.
 - 3. Do not tamp earth for backfilling in footing bottoms.
- E. Trench Earthwork:
 - 1. Utility trenches (except sanitary and storm sewer):
 - a. Excavate to a width as necessary for sheeting and bracing and proper performance of the work.
 - b. Grade bottom of trenches with bell-holes, scooped-out to provide a uniform bearing.
 - c. Support piping on suitable undisturbed earth unless a mechanical support is shown. Unstable material removed from the bottom of the trench or excavation shall be replaced with select granular material placed in layers not exceeding 150 mm (6 inches) loose thickness.
 - d. The length of open trench in advance of pipe laying shall not be greater than is authorized by the Resident Engineer.
 - e. Provide buried utility lines with utility identification tape. Bury tape 300 mm (12 inches) below finished grade; under pavements and slabs, bury tape 150 mm (6 inches) below top of subgrade
 - f. Bury detection wire directly above non-metallic piping at a distance not to exceed 300 mm (12 inches) above the top of pipe. The wire shall extend continuously and unbroken, from manhole to manhole. The ends of the wire shall terminate inside the manholes at each end of the pipe, with a minimum of 0.9 m (3 feet) of wire, coiled, remaining accessible in each manhole. The wire shall remain insulated over its entire length. The wire shall enter manholes

between the top of the corbel and the frame and extend up through the chimney seal between the frame and the chimney seal. For force mains, the wire shall terminate in the valve pit at the pump station end of the pipe.

- g. Bedding shall be of the type and thickness shown. Initial backfill material shall be placed and compacted with approved tampers to a height of at least one foot above the utility pipe or conduit. The backfill shall be brought up evenly on both sides of the pipe for the full length of the pipe. Care shall be taken to ensure thorough compaction of the fill under the haunches of the pipe. Except as specified otherwise in the individual piping section, provide bedding for buried piping in accordance with AWWA C600, Type 4, except as specified herein. Backfill to top of pipe shall be compacted to 95 percent of ASTM D 698 maximum density. Plastic piping shall have bedding to spring line of pipe. Provide materials as follows:
 - Class I: Angular, 6 to 40 mm (0.25 to 1.5 inches), graded stone, including a number of fill materials that have regional significance such as coral, slag, cinders, crushed stone, and crushed shells.
 - 2) Class II: Coarse sands and gravels with maximum particle size of 40 mm (1.5 inches), including various graded sands and gravels containing small percentages of fines, generally granular and noncohesive, either wet or dry. Soil Types GW, GP, SW, and SP are included in this class as specified in ASTM D 2487.
 - 3) Clean, coarse-grained sand classified as SW or SP by ASTM D 2487 for bedding and backfill as shown on the drawings and described in 2.1 Materials this SECTION 31 20 11 EARTHWORK.
 - 4) Clean, coarsely graded natural gravel, crushed stone or a combination thereof identified as GP or GW in accordance with ASTM D 2487 for bedding and backfill as shown on the drawings and described in 2.1 Materials this SECTION 31 20 11 EARTHWORK. Maximum particle size shall not exceed 75 mm 3 inches).
- 2. Sanitary and storm sewer trenches:
 - a. Trench width below a point 150 mm (6 inches) above top of the pipe shall be 600 mm (24 inches) for up to and including 300 mm (12 inches) diameter and four-thirds diameter of pipe plus 200 mm (8

31 20 11 - 10

inches) for pipe larger than 300 mm (l2 inches). Width of trench above that level shall be as necessary for sheeting and bracing and proper performance of the work.

- b. The bottom quadrant of the pipe shall be bedded on suitable undisturbed soil or granular fill. Unstable material removed from the bottom of the trench or excavation shall be replaced with select granular material placed in layers not exceeding 150 mm (6 inches) loose thickness.
 - Undisturbed: Bell holes shall be no larger than necessary for jointing. Backfill up to a point 300 mm (12 inches) above top of pipe shall be clean earth placed and tamped by hand.
 - 2) Granular Fill: Depth of fill shall be a minimum of 75 mm (3 inches) plus one-sixth of pipe diameter below the pipe of 300 mm (12 inches) above top of pipe. Place and tamp fill material by hand.
- c. Place and compact as shown on the drawings and described in 3.3 Filling and Backfilling this SECTION 31 20 11 EARTHWORK the remainder of backfill using acceptable excavated materials. Do not use unsuitable materials.
- d. Use granular fill for bedding where rock or rocky materials are excavated.
- e. Provide buried utility lines with utility identification tape. Bury tape 300 mm (12 inches) below finished grade; under pavements and slabs, bury tape 150 mm (6 inches) below top of subgrade
- f. Bury detection wire directly above non-metallic piping at a distance not to exceed 300 mm (12 inches) above the top of pipe. The wire shall extend continuously and unbroken, from manhole to manhole. The ends of the wire shall terminate inside the manholes at each end of the pipe, with a minimum of 0.9 m (3 feet) of wire, coiled, remaining accessible in each manhole. The wire shall remain insulated over its entire length. The wire shall enter manholes between the top of the corbel and the frame and extend up through the chimney seal between the frame and the chimney seal. For force mains, the wire shall terminate in the valve pit at the pump station end of the pipe.
- g. Bedding shall be of the type and thickness shown. Initial backfill material shall be placed and compacted with approved tampers to a

height of at least one foot above the utility pipe or conduit. The backfill shall be brought up evenly on both sides of the pipe for the full length of the pipe. Care shall be taken to ensure thorough compaction of the fill under the haunches of the pipe. Except as specified otherwise in the individual piping section, provide bedding for buried piping in accordance with AWWA C600, Type 4, except as specified herein. Backfill to top of pipe shall be compacted to 95 percent of ASTM D698 maximum density. Plastic piping shall have bedding to spring line of pipe. Provide materials as follows:

- Class I: Angular, 6 to 40 mm (0.25 to 1.5 inches), graded stone, including a number of fill materials that have regional significance such as coral, slag, cinders, crushed stone, and crushed shells.
- 2) Class II: Coarse sands and gravels with maximum particle size of 40 mm (1.5 inches), including various graded sands and gravels containing small percentages of fines, generally granular and noncohesive, either wet or dry. Soil Types GW, GP, SW, and SP are included in this class as specified in ASTM D2487.
- 3) Clean, coarse-grained sand classified as SW or SP by ASTM D 487 for bedding and backfill as shown on the drawings and described in 2.1 Materials this SECTION 31 20 11 EARTHWORK.
- 4) Clean, coarsely graded natural gravel, crushed stone or a combination thereof identified having a classification of GW GP in accordance with ASTM D2487 for bedding and backfill as shown on the drawings and described in 2.1 Materials this SECTION 31 20 11 EARTHWORK. Maximum particle size shall not exceed 75 mm (3 inches).
- F. Site Earthwork: Excavation shall be accomplished as required by drawings and specifications. Remove subgrade materials that are determined by the Resident Engineer as unsuitable and replace with acceptable material. If there is a question as to whether material is unsuitable or not, the Contractor shall obtain samples of the material, under the direction of the Resident Engineer, and the materials shall be examined by an independent testing laboratory for soil classification to determine whether it is unsuitable or not. When unsuitable material is encountered and removed, the contract price and time will be adjusted in accordance

with Articles, DIFFERING SITE CONDITIONS, CHANGES and CHANGES-SUPPLEMENT of the GENERAL CONDITIONS as applicable. Adjustments to be based on meters (yardage) in cut section only.

- G. Finished elevation of subgrade shall be as follows:
 - 1. Pavement Areas bottom of the pavement or base course as applicable.
 - Planting and Lawn Areas 100 mm (4 inches) below the finished grade, unless otherwise specified or indicated on the drawings.

3.3 FILLING AND BACKFILLING:

- A. General: Do not fill or backfill until all debris, unsatisfactory soil materials, obstructions, and deleterious materials have been removed from the excavation. Proof-roll exposed subgrades with a fully loaded dump truck. Use excavated materials or borrow for fill and backfill, as applicable. Do not use unsuitable excavated materials. Do not backfill until foundation walls have been completed above grade and adequately braced, waterproofing or dampproofing applied, and pipes coming in contact with backfill have been installed and inspected and approved by Resident Engineer.
- B. Proof-rolling Existing Subgrade: Proof rolling shall be done on an exposed subgrade free of surface water (wet conditions resulting from rainfall) which would promote degradation of an otherwise acceptable subgrade. After stripping, proof roll the existing subgrade of the /with six passes of a dump truck loaded with 6 cubic meters (4 cubic yards) of soil, pneumatic-tired roller. Operate the roller truck in a systematic manner to ensure the number of passes over all areas, and at speeds between 4 to 5.5 km/hour (2 1/2 to 3 1/2 mph). When proof rolling, one-half of the passes made with the roller shall be in a direction perpendicular to the other passes. Notify the Resident Engineer a minimum of 3 days prior to proof rolling. Proof rolling shall be performed in the presence of the Resident Engineer. Rutting or pumping of material shall be undercut as directed by the Resident Engineer to a depth of 8 inches and replaced with fill and backfill select material.
- C. Placing: Place material in horizontal layers not exceeding 200 mm (8 inches) in loose depth and then compacted. Do not place material on surfaces that are muddy, frozen, or contain frost.
- D. Compaction: Use approved equipment (hand or mechanical) well suited to the type of material being compacted. Do not operate mechanized vibratory compaction equipment within 3000 mm (10 feet) of new or existing building

walls without the prior approval of the Resident Engineer. Moisten or aerate material as necessary to provide the moisture content that will readily facilitate obtaining the specified compaction with the equipment used. Compact each layer until there is no evidence of further compaction to not less than 95 percent of the maximum density determined in accordance with the following test method D1557. Backfill adjacent to any and all types of structures shall be placed and compacted to at least 90 percent laboratory maximum density for cohesive materials or 95 percent laboratory maximum density for cohesionless materials to prevent wedging action or eccentric loading upon or against the structure.

- E. Borrow Material: Borrow material shall be selected to meet the requirements and conditions of the particular fill or embankment for which it is to be used. Borrow material shall be obtained from the borrow areas from approved private sources. Unless otherwise provided in the contract, the Contractor shall obtain from the owners the right to procure material, pay royalties and other charges involved, and bear the expense of developing the sources, including rights-of-way for hauling. Borrow material from approved sources on Government-controlled land may be obtained without payment of royalties. Unless specifically provided, no borrow shall be obtained within the limits of the project site without prior written approval. Necessary clearing, grubbing, and satisfactory drainage of borrow pits and the disposal of debris thereon shall be considered related operations to the borrow excavation.
- F. Opening and Drainage of Excavation and Borrow Pits: The Contractor shall notify the Resident Engineer sufficiently in advance of the opening of any excavation or borrow pit to permit elevations and measurements of the undisturbed ground surface to be taken. Except as otherwise permitted, borrow pits and other excavation areas shall be excavated providing adequate drainage. Overburden and other spoil material shall be transported to designated spoil areas or otherwise disposed of as directed. Borrow pits shall be neatly trimmed and drained after the excavation is completed. The Contractor shall ensure that excavation of any area, operation of borrow pits, or dumping of spoil material results in minimum detrimental effects on natural environmental conditions.

3.4 GRADING:

A. General: Uniformly grade the areas within the limits of this section, including adjacent transition areas. Smooth the finished surface within

specified tolerance. Provide uniform levels or slopes between points where elevations are indicated, or between such points and existing finished grades. Provide a smooth transition between abrupt changes in slope.

- B. Cut rough or sloping rock to level beds for foundations. In unfinished areas fill low spots and level off with coarse sand or fine gravel.
- C. Slope backfill outside the building away from the building walls for a minimum distance of 3048 mm (10 feet)at a minimum five percent (5%) slope.
- D. The finished grade shall be 150 mm (6 inches) below bottom line of windows or other building wall openings unless greater depth is shown.
- E. Place crushed stone or gravel fill under concrete slabs on grade tamped and leveled. The thickness of the fill shall be 150 mm (6 inches), unless otherwise indicated.
- F. Finish subgrade in a condition acceptable to the Resident Engineer at least one day in advance of the paving operations. Maintain finished subgrade in a smooth and compacted condition until the succeeding operation has been accomplished. Scarify, compact, and grade the subgrade prior to further construction when approved compacted subgrade is disturbed by contractor's subsequent operations or adverse weather.
- G. Grading for Paved Areas: Provide final grades for both subgrade and base course to +/- 6 mm (0.25 inches) of indicated grades.

3.5 LAWN AREAS:

- A. General: Harrow and till to a depth of 100 mm (4 inches), new or existing lawn areas to remain, which are disturbed during construction. Establish existing or design grades by dragging or similar operations. Do not carry out lawn areas earthwork out when the soil is wet so that the tilth of the soil will be destroyed. Plant bed must be approved by Resident Engineer before seeding or sodding operation begins.
- B. Finished Grading: Begin finish grading after rough grading has had sufficient time for settlement. Scarify subgrade surface in lawn areas to a depth of 100 mm (4 inches). Apply topsoil so that after normal compaction, dragging and raking operations (to bring surface to indicated finish grades) there will be a minimum of 100 mm (4 inches) of topsoil over all lawn areas; make smooth, even surface, and true grades, which will not allow water to stand at any point. Shape top and bottom of banks to form reverse curves in section; make junctions with undisturbed areas to conform to existing topography. Solid lines within grading limits

indicate finished contours. Existing contours, indicated by broken lines are believed approximately correct but are not guaranteed.

- C. Fertilizing: Incorporate fertilizer into the soil to a depth of 100 mm (4 inches) at a rate of 12 kg/100 m2 (25 pounds per 1000 square feet).
- D. Seeding: Seed at a rate of 2 kg/100 m2 (4 pounds per 1000 square feet) and accomplished only during periods when uniform distribution may be assured. Lightly rake seed into bed immediately after seeding. Roll seeded area immediately with a roller not to exceed 225 kg/m (150 pounds per foot) of roller width.
- E. Sodding: Topsoil shall be firmed by rolling and during periods of high temperature the topsoil shall be watered lightly immediately prior to laying sod. Sod strips shall be tightly butted at the ends and staggered in a running bond fashion. Placement on slopes shall be from the bottom to top of slope with sod strips running across slope. Secure sodded slopes by pegging or other approved methods. Roll sodded area with a roller not to exceed 225 kg/m (150 pounds per foot) of the roller width to improve contact of sod with the soil.
- F. Watering: The Resident Engineer is responsible for having adequate water available at the site. As sodding is completed in any one section, the entire sodded area shall be thoroughly irrigated by the contractor, to a sufficient depth, that the underside of the new sod pad and soil, immediately below sod, is thoroughly wet. Resident Engineer will be responsible for sod after installation and acceptance.
- 3.6 DISPOSAL OF UNSUITABLE AND EXCESS EXCAVATED MATERIAL:
 - A. Disposal: Remove surplus satisfactory soil and waste material, including unsatisfactory soil, trash, and debris, and legally dispose of it off Medical Center property.
 - B. Place excess excavated materials suitable for fill and/or backfill on site where directed.
 - C. Remove from site and dispose of any excess excavated materials after all fill and backfill operations have been completed.
 - D. Segregate all excavated contaminated soil designated by the Resident Engineer from all other excavated soils, and stockpile on site on two 0.15 mm (6 mil) polyethylene sheets with a polyethylene cover. A designated area shall be selected for this purpose. Dispose of excavated contaminated material in accordance with State and Local requirements.

3.7 CLEAN-UP:

Upon completion of earthwork operations, clean areas within contract limits, remove tools, and equipment. Provide site clear, clean, free of debris, and suitable for subsequent construction operations. Remove debris, rubbish, and excess material from the Medical Center.

- - - E N D - - -

SECTION 31 23 19 DEWATERING

PART 1 - GENERAL

1.1 DESCRIPTION:

This section specifies performance of dewatering required to lower and control ground water table levels and hydrostatic pressures to permit excavation, backfill, and construction to be performed in the dry. Control of surface water shall be considered as part of the work under this specification.

1.2 SUMMARY:

- A. The work to be completed by the Contractor includes, but is not necessarily limited to the following:
 - 1. Implementation of the Erosion and Sedimentation Control Plan.
 - 2. Dewater excavations, including seepage and precipitation.
- B. The Contractor shall be responsible for providing all materials, equipment, labor, and services necessary for care of water and erosion control. Excavation work shall not begin before the Erosion and Sedimentation Control Plan is in place.

1.3 REQUIREMENT:

- A. Dewatering system shall be of sufficient size and capacity necessary to lower and maintain ground water table to an elevation at least 300 mm (1 foot) below lowest foundation subgrade or bottom of pipe trench and to allow material to be excavated, piles to be driven, and concrete placed, in a reasonably dry condition. Materials to be removed shall be sufficiently dry to permit excavation to grades shown and to stabilize excavation slopes where sheeting is not required. Operate dewatering system continuously until backfill work has been completed.
- B. Reduce hydrostatic head below any excavation to the extent that water level in the construction area is a minimum of 300 mm (1 foot) below prevailing excavation surface.
- C. Prevent loss of fines, seepage, boils, quick conditions or softening of foundation strata.
- D. Maintain stability of sides and bottom of excavation.
- E. Construction operations are performed in the dry.
- F. Control of surface and subsurface water is part of dewatering requirements. Maintain adequate control so that:

- The stability of excavated and constructed slopes are not adversely affected by saturated soil, including water entering prepared subbase and subgrades where underlying materials are not free draining or are subject to swelling or freeze-thaw action.
- 2. Erosion is controlled.
- 3. Flooding of excavations or damage to structures does not occur.
- 4. Surface water drains away from excavations.
- 5. Excavations are protected from becoming wet from surface water, or insure excavations are dry before additional work is undertaken.
- G. Permitting Requirements: The contractor shall comply with and obtain the required State and County permits where the work is performed.

1.4 RELATED WORK:

- A. Materials testing and inspection during construction: Section 01 45 29, TESTING LABORATORY SERVICES.
- B. Safety Requirements: SECTION 01 35 26 SAFETY REQUIREMENTS.
- C. Submittal requirements as specified in Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- D. Protection of existing utilities, fire protection services, existing equipment, roads, and pavements: Section 01 00 00, GENERAL REQUIREMENTS.
- E. Subsurface Investigation: Section 01 00 00, GENERAL REQUIREMENTS, Article 1.11, PHYSICAL DATA.
- F. Excavation, backfilling, site grade and utilities: Section 31 20 00, EARTH MOVING.

1.5 SUBMITTALS:

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Drawings and Design Data:
 - Submit drawings and data showing the method to be employed in dewatering excavated areas 30 days before commencement of excavation.
 - 2. Material shall include location, depth and size of wellpoints, headers, sumps, ditches, size and location of discharge lines, capacities of pumps and standby units, and detailed description of dewatering methods to be employed to convey the water from site to adequate disposal.
 - 3. Include a written report outlining control procedures to be adopted if dewatering problem arises.
 - 4. Capacities of pumps, prime movers, and standby equipment.
- 5. Design calculations proving adequacy of system and selected equipment. The dewatering system shall be designed using accepted and professional methods of design and engineering consistent with the best modern practice. The dewatering system shall include the deep wells, wellpoints, and other equipment, appurtenances, and related earthwork necessary to perform the function.
- 6. Detailed description of dewatering procedure and maintenance method.
- 7. Materials submitted shall be in a format acceptable for inclusion in required permit applications to any and all regulatory agencies for which permits for discharge water from the dewatering system are required due to the discharge reaching regulated bodies of water.
- C. Inspection Reports.
- D. All required permits.

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION

3.1 INSTALLATION:

- A. Install a dewatering system to lower and control ground surface water in order to permit excavation, construction of structure, and placement of backfill materials to be performed under dry conditions. Make the dewatering system adequate to pre-drain the water-bearing strata above and below the bottom of structure foundations, utilities and other excavations.
- B. In addition, reduce hydrostatic pressure head in water-bearing strata below structure foundations, utility lines, and other excavations, to extent that water levels in construction area are a minimum of 300 mm (1 foot) below prevailing excavation surface at all times.

3.2 OPERATION:

- A. Prior to any excavation below the ground water table, place system into operation to lower water table as required and operate it continuously 24 hours a day, 7 days a week until utilities and structures have been satisfactorily constructed, which includes the placement of backfill materials and dewatering is no longer required.
- B. Place an adequate weight of backfill material to prevent buoyancy prior to discontinuing operation of the system.

3.3 WATER DISPOSAL:

A. Dispose of water removed from the excavations in such a manner as:1. Will not endanger portions of work under construction or completed.

31 23 19 - 3

- 2. Will cause no inconvenience to Government or to others working near site.
- 3. Will comply with the stipulations of required permits for disposal of water.
- 4. Will Control Runoff: The Contractor shall be responsible for control of runoff in all work areas including but not limited to: excavations, access roads, parking areas, laydown, and staging areas. The Contractor shall provide, operate, and maintain all ditches, basins, sumps, culverts, site grading, and pumping facilities to divert, collect, and remove all water from the work areas. All water shall be removed from the immediate work areas and shall be disposed of in accordance with applicable permits.
- B. Excavation Dewatering:
 - The Contractor shall be responsible for providing all facilities required to divert, collect, control, and remove water from all construction work areas and excavations.
 - Drainage features shall have sufficient capacity to avoid flooding of work areas.
 - Drainage features shall be so arranged and altered as required to avoid degradation of the final excavated surface(s).
 - The Contractor shall utilize all necessary erosion and sediment control measures as described herein to avoid construction related degradation of the natural water quality.
- C. Dewatering equipment shall be provided to remove and dispose of all surface and ground water entering excavations, trenches, or other parts of the work during construction. Each excavation shall be kept dry during subgrade preparation and continually thereafter until the structure to be built, or the pipe to be installed therein, is completed to the extent that no damage from hydrostatic pressure, flotation, or other cause will result.

3.4 STANDBY EQUIPMENT:

Provide complete standby equipment, installed and available for immediate operation, as may be required to adequately maintain de-watering on a continuous basis and in the event that all or any part of the system may become inadequate or fail.

3.5 CORRECTIVE ACTION:

If dewatering requirements are not satisfied due to inadequacy or failure of the dewatering system (loosening of the foundation strata, or instability of slopes, or damage to foundations or structures), perform work necessary for reinstatement of foundation soil and damaged structure or damages to work in place resulting from such inadequacy or failure by Contractor, at no additional cost to Government.

3.6 DAMAGES:

Immediately repair damages to adjacent facilities caused by dewatering operations.

3.7 REMOVAL:

Insure compliance with all conditions of regulating permits and provide such information to the Resident Engineer. Obtain written approval from Resident Engineer before discontinuing operation of dewatering system.

---- E N D -----

SECTION 31 23 23.33 FLOWABLE FILL

PART 1 - GENERAL

1.1 INTRODUCTION:

- A. Flowable fill refers to a cementitious slurry consisting of a mixture of fine aggregate or filler, water, and cementitious material(s), which is used as a fill or backfill in lieu of compacted earth. This mixture is capable of filling all voids in irregular excavations and hard to reach places (such as under undercuts of existing slabs), is self-leveling, and hardens in a matter of a few hours without the need for compaction in layers. Flowable fill is sometimes referred to as controlled density fill (CDF), controlled low strength material (CLSM), lean concrete slurry, and unshrinkable fill.
- B. Flowable fill materials will be used as only as a structural fill replacement on VA projects. Unless otherwise noted, flowable fill installed as a substitution for structural earth fill, shall not be designed to be removed by the use of hand tools. The materials and mix design for the flowable fill should be designed to produce a comparable compressive strength to the surrounding soil after hardening, making excavation at a later time possible to produce the compressive strength indicated for the placed location, as determined by the Resident Engineer .

1.2 DESCRIPTION:

A. Furnish and place flowable fill in a fluid condition, that sets within the required time and, after curing, obtains the desired strength properties as evidenced by the laboratory testing of the specific mix design, at locations shown on the plans or as directed by the Resident Engineer. This section specifies flowable fill for use as structural fill to remain excavatable using hand tools remain easily excavatable using a backhoe as would be utilized for adjoining earth remain permanently.

1.3 RELATED WORK:

- A. Materials testing and inspection during construction: Section 01 45 29, TESTING LABORATORY SERVICES.
- B. Earthwork, excavation and backfill and compaction requirements: Section 31 20 11, EARTHWORK.

1.4 DEFINITIONS:

- A. Flowable fill Ready-mix Controlled Low Strength Material used as an alternative to compacted soil, and is also known as controlled density fill, and several other names, some of which are trademark names of material suppliers. Flowable fill (Controlled Low Strength Material) differs from portland cement concrete as it contains a low cementitious content to reduce strength development for possible future removal. Unless specifically approved otherwise, by the Resident Engineer, flowable fill shall be designed as a permanent material, not designed for future removal. Design strength for this permanent type flowable fill shall be a compressive strength of 2.1 MPa (300 psi) minimum at 28 days. Chemical admixtures may also be used in flowable fill to modify performance properties of strength, flow, set and permeability.
- B. Excavatable Flowable fill flowable fill designed with a compressive strength that will allow excavation as either machine tool excavatable at compressive strength of 1.5 MPa (200 psi) maximum at 1 year, or hand tool excavatable at compressive strength of 0.7 MPa (100 psi) maximum at 1 year.

1.5 SUBMITTALS:

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Flowable fill Mix Design: Provide flowable fill mix design containing cement and water. At the contractor's option, it may also contain fly ash, aggregate, or chemical admixtures in any proportions such that the final product meets the strength and flow consistency, and shrinkage requirements included in this specifications.
 - 1. Test and Performance Submit the following data:
 - a. Flowable fill shall have a minimum strength of 2.1 MPa (300 psi) according to ASTM C 39 at 28 days after placement.
 - b. Flowable fill shall have minimal subsidence and bleed water shrinkage. Evaporation of bleed water shall not result in shrinkage of more than 10.4 mm per m (1/8 inch per ft.) of flowable fill depth (for mixes containing high fly ash content). Measurement of a Final Bleeding shall be as measured in Section 10 of ASTM C 940 "Standard Test Method for Expansion and Bleeding of Freshly Mixed Grouts for Preplaced-Aggregate Concrete in the Laboratory.

- c. Flowable fill shall have a unit weight of 1900 2300 kg/m3 (115 145 lb/feet 3) measured at the point of placement after a 60 minute ready-mix truck ride.
- C. Provide documentation that the admixture supplier has experience of at least one year, with the products being provided and any equipment required to obtain the desired performance of the product.
- D. Manufacturer's Certificates: Provide Resident Engineer with documentation issued by the State Agency responsible for approving materials for burial, indicating conformance with applicable rules and regulations. A certification that the materials incorporated in the flowable fill, following achievement of the required strength, do not represent a threat to groundwater quality.

1.6 APPLICABLE PUBLICATIONS:

- A. Publications listed below form a part of this specification to the extent referenced. Publications are referenced in text by basic designation only.
- B. American Society for Testing and Materials (ASTM): D4832-02.....Standard Test Method for Preparation and Testing

of Controlled Low Strength Material (CLSM) Test Cylinders.

C618-03.....Standard Specifications for Coal Fly Ash and Raw or Calcined Natural Pozzolan for use as Mineral Admixture in Concrete. (Use Fly Ash conforming to the chemical and physical requirements for mineral admixture, Class F listed, including Table 2 (except for Footnote A). Waive the loss on ignition requirement.)

C403/C403M-05.....Standard Test Method for Time of Setting of Concrete Mixtures by Penetration Resistance. C150-99 Rev.A-04.....Standard Specification for Portland Cement C33-03....Standard Specification for Concrete Aggregates C494/C494M-04....Standard Specification for Chemical Admixtures for

Concrete

C940 RevA-98.....Standard Specification for Expansion and Bleeding

of Freshly Mixed Grouts for Preplaced - Aggregate Concrete in the Laboratory

C. American Concrete Institute (ACI): SP-150-94.....Controlled Low-Strength Materials

1.7 QUALITY ASSURANCE:

- A. Manufacturer: Flowable fill shall be manufactured by a ready-mix concrete producer with a minimum of 1 years' experience in the production of similar products.
- B. Materials: For each type of material required for the work of this Section, provide primary materials that are the products of one manufacturer. If not otherwise specified here, materials shall comply with recommendations of ACI 229, "Controlled Low Strength Materials."
- C. Pre-Approval Procedures: The use of flowable fill during any part of the project shall be restricted to those incidences where, due to field conditions, the Contractor has made the Resident Engineer aware of the conditions for which he recommends the use of the flowable, and the Resident Engineer has confirmed those conditions and approved the use of the flowable fill, in advance. During the submittal process, the contractor shall prepare and submit various flowable fill mix designs corresponding to required conditions or if the contractor desires to use flowable fill due to economics. Approval for the strength of the flowable fill shall be obtained from the Resident Engineer when the contractor desires, or is required, to use flowable fill at specific location(s) within the project. Prior to commencement of field operations the contractor shall establish procedures to maintain optimum working conditions and to coordinate this work with related and adjacent work.

1.8 DELIVERY, STORAGE, AND HANDLING:

A. Deliver and handle all products and equipment required, in strict compliance with manufacturer's recommendations. Protect from damage due to weather, excessive temperatures, and construction operations.

1.9 PROJECT CONDITIONS:

A. Perform installation of flowable fill only when approved by the Resident Engineer, and when existing and forecasted weather conditions are within the limits established by the manufacturer of the materials and products used.

PART 2 - PRODUCTS

2.1 MATERIALS:

A. Provide flowable fill containing, at a minimum, cementitious materials and water. Cementitious materials shall be portland cement, pozzolanic materials, or other self-cementing materials, or combinations thereof, at the contractor's option, and following approval by the Resident Engineer.

31 23 23.33 - 4

The flowable fill mix design may also contain, fine aggregate or filler, and/or chemical admixtures in any proportions such that the final product meets the strength, flow consistency and shrinkage requirements included in this specification, as approved by the Resident Engineer.

- B. Portland Cement: ASTM C150, Type 1 or Type 2.
- C. Mixing Water: Fresh, clean, and potable.
- D. Air-Entraining Admixture: ASTM C260.
- E. Chemical Admixtures: ASTM C494.
- F. Aggregate: ASTM C33.

2.2 FLOWABLE FILL MIXTURE:

- A. Mix design shall produce a consistency that will result in a flowable product at the time of placement which does not require manual means to move it into place.
- B. Flowable fill shall have a minimum strength of 2.1 MPa (300 psi) according to ASTM C39 at 28 days after placement.
- C. Flowable fill shall have minimal subsidence and bleed water shrinkage. Evaporation of bleed water shall not result in shrinkage of more than 10.4 mm per m (1/8 inch per foot) of flowable fill depth (for mixes containing high fly ash content). Measurement of a Final Bleeding shall be as measured in Section 10 of ASTM C 940 "Standard Test Method for Expansion and Bleeding of Freshly Mixed Grouts for Preplaced-Aggregate Concrete in the Laboratory.
- D. Flowable fill shall have a unit weight of 1900 2300 kg/m3 (115 145 lbs/feet3) measured at the point of placement after a 60 minute ready-mix truck ride. In the absence of strength data, the cementitious content shall be a maximum of 90 kg/m3 (150 lbs/cy).
- E. Flowable fill shall have an in-place yield of at least 98% of design yield for permanent type a maximum of 110% of design yield for removable types at 1 year.
- F. Provide equipment as recommended by the Manufacturer and comply with manufacturer's recommendations for the addition of additives, whether at the production plant or prior to placement at the site.

PART 3 - EXECUTION

3.1 EXAMINATION:

A. Examine conditions of substrates and other conditions under which work is to be performed and notify Resident Engineer, in writing, of circumstances detrimental to the proper completion of the work. Do not proceed until unsatisfactory conditions are corrected.

3.2 APPLICATION OF FLOWABLE FILL:

A. Secure tanks, pipes and other members to be encased in flowable fill. Insure that there are no exposed metallic pipes, conduits, or other items that will be in contact with the flowable fill after placement. If so, replace with non-metallic materials or apply manufacturers recommended coating to protect metallic objects before placing the flowable fill. Replacement or protection of metallic objects is subject to the approval of the Resident Engineer.

3.3 PROTECTION AND CURING:

B. Protect exposed surfaces of flowable fill from premature drying, wash by rain or running water, wind, mechanical injury, and excessively hot or cold temperature. Curing method shall be subject to approval by Resident Engineer.

- - - E N D - - -

SECTION 32 05 23

CEMENT AND CONCRETE FOR EXTERIOR IMPROVEMENTS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Subbase for concrete pavements.
 - 2. Curbs, gutters, and combination curbs and gutters wheel stops.
 - Pedestrian Pavement: Walks, grade slabs, lawn mower strips, pedestrian crossings, wheelchair curb ramps, terraces, steps patios, and healing gardens.
 - 4. Vehicular Pavement: Service courts, driveways, parking lots, and loading docks.
 - 5. Equipment Pads: Oxygen storage, transformers, propane tanks, and generator pads.

1.2 RELATED REQUIREMENTS

- A. Field Testing: Section 01 45 29, TESTING LABORATORY SERVICES.
- B. Subgrade Preparation and Subbase Compaction: Section 31 20 11, EARTHWORK.

1.3 APPLICABLE PUBLICATIONS

- A. Comply with references to extent specified in this section.
- B. American Association of State Highway and Transportation Officials (AASHTO):
 - M147-65-UL-04 Materials for Aggregate and Soil-Aggregate Subbase, Base and Surface Courses.
 - M233-86 Boiled Linseed Oil Mixture for Treatment of Portland Cement Concrete.
- C. American Concrete Institute (ACI):
 - 1. 305R-10 Guide to Hot Weather Concreting.
 - 2. 306R-10 Guide to Cold Weather Concreting.
- D. American National Standards Institute (ANSI):
 - B101.3 Wet DOCF of Common Hard Surface Floor Materials (Including Action and Limit Thresholds for the Suitable Assessment of the Measured Values).
- E. ASTM International (ASTM):
 - A615/A615M-16 Deformed and Plain Carbon Steel Bars for Concrete Reinforcement.

- A996/A996M-15 Rail-Steel and Axle-Steel Deformed Bars for Concrete Reinforcement.
- A1064/A1064M-16 Carbon-Steel Wire and Welded Wire Reinforcement, Plain and Deformed, for Concrete.
- 4. C33/C33M-16 Concrete Aggregates.
- 5. C94/C94M-16 Ready Mixed Concrete.
- 6. C143/C143M-15a Slump of Hydraulic Cement Concrete.
- 7. C150/C150M-16 Portland Cement.
- 8. C171-16 Sheet Materials for Curing Concrete.
- 9. C260/C260M-10a Air Entraining Admixtures for Concrete.
- 10. C309-11 Liquid Membrane Forming Compounds for Curing Concrete.
- 11. C494/C494M-15a Chemical Admixtures for Concrete.
- 12. C618-15 Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete.
- 13. C979/C979M-16 Pigments for Integrally Colored Concrete.
- 14. C989/C989M-14 Slag Cement for Use in Concrete and Mortars.
- 15. C1240-15 Silica Fume Used in Cementitious Mixtures.
- 16. D1751-04(2013)e1 Preformed Expansion Joint Filler for Concrete Paving and Structural Construction (Nonextruding and Resilient Bituminous Types).
- 17. D5893/D5893M-10 Cold Applied, Single Component, Chemically Curing Silicone Joint Sealant for Portland Cement Concrete Pavements.
- 18. D6690-15 Joint and Crack Sealants, Hot Applied, for Concrete and Asphalt Pavements.

1.4 PREINSTALLATION MEETINGS

- A. Conduct preinstallation meeting at project site minimum 30 days before beginning Work of this section.
 - 1. Required Participants:
 - a. Contracting Officer's Representative.
 - b. Inspection and Testing Agency.
 - c. Contractor.
 - d. Installer.
 - e. Other installers responsible for adjacent and intersecting work, including excavation, plantings, traffic markings, and jointing
 - Meeting Agenda: Distribute agenda to participants minimum 3 days before meeting.
 - a. Installation schedule.

- b. Installation sequence.
- c. Preparatory work.
- d. Protection before, during, and after installation.
- e. Installation.
- f. Terminations.
- g. Transitions and connections to other work.
- h. Inspecting and testing.
- i. Other items affecting successful completion.
- 3. Document and distribute meeting minutes to participants to record decisions affecting installation.

1.5 SUBMITTALS

- A. Submittal Procedures: Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Submittal Drawings:
 - 1. Show size, configuration, and fabrication and installation details.
 - 2. Show reinforcing.
 - 3. Include jointing plan for concrete pavements, curbs, and gutters.
- C. Manufacturer's Literature and Data:
 - 1. Description of each product.
 - 2. Installation instructions.
- D. Samples:
 - Exposed Aggregate Concrete Panel: 0.4 sq. m by 50 mm (4 sq. ft. by 2 inches) thick, 2 required, each color and finish.
 - Colored Concrete Panel: As specified in Section 09 06 00, SCHEDULE FOR FINISHES, with mix data.
- E. Test reports: Certify products comply with specifications.
 - 1. Concrete materials.
 - 2. Select subbase materials.
 - 3. Field test reports.
- F. Certificates: Certify products comply with specifications.
 - 1. Expansion joint filler.
 - 2. Reinforcement.
 - 3. Curing materials.
 - 4. Concrete protective coating.
- G. Qualifications: Substantiate qualifications comply with specifications.
 - 1. Installer with project experience list .
 - 2. Land surveyor.

- H. Concrete mix design.
- I. Select subbase job-mix design.
- J. Proposed hot and cold weather concreting methods.
- K. Land surveyor's construction staking notes, before placing concrete.
 - 1. Identify discrepancies between field conditions and Drawings.

1.6 QUALITY ASSURANCE

- A. Installer Qualifications:
 - 1. Regularly installs specified products.
 - Installed specified products with satisfactory service on five similar installations.
 - Project Experience List: Provide contact names and addresses for completed projects.
- B. Land Surveyor: Professional land surveyor or engineer registered to provide land surveys in jurisdiction where project is located.
- C. Preconstruction Testing:
 - Engage independent testing laboratory to perform tests and submit reports.
 - Deliver samples to laboratory in number and quantity required for testing.
 - 2. Concrete mix design.
 - 3. Select subbase job-mix design. Report the following:
 - a. Material sources.
 - b. Gradation.
 - c. Plasticity index.
 - d. Liquid limit.
 - e. Laboratory compaction curves indicating maximum density at optimum moisture content.

1.7 DELIVERY

- A. Deliver steel reinforcement to prevent damage.
- B. Before installation, return or dispose of distorted or damaged steel reinforcement.
- C. Bulk Products: Deliver bulk products away from buildings, utilities, pavement, and existing turf and planted areas. Maintain dry bulk product storage away from contaminants.

1.8 STORAGE AND HANDLING

A. Store products indoors in dry, weathertight facility.

B. Protect products from damage during handling and construction operations.

1.9 FIELD CONDITIONS

- A. Hot Weather Concreting Procedures: ACI 305R.
- B. Cold Weather Concreting Procedures: ACI 306R.
 - 1. Use non-corrosive, non-chloride accelerator admixture.
 - Do not use calcium chloride, thiocyanates or admixtures containing more than 0.05 percent chloride ions.

1.10 WARRANTY

A. Construction Warranty: See the contract documents.

PART 2 - PRODUCTS

2.1 CONCRETE MATERIALS

- A. Portland Cement: ASTM C150/C150M, Type I or II.
- B. Pozzolans:
 - 1. Fly Ash: ASTM C618, Class C or F including supplementary optional physical requirements.
 - 2. Slag: ASTM C989/C989M; Grade 80,
 - 3. Silica Fume: ASTM C1240.
- C. Coarse Aggregate: ASTM C33/C33M,
- D. Fine Aggregate: ASTM C33/C33M.
- E. Mixing Water: Fresh, clean, and potable.
- F. Air-Entraining Admixture: ASTM C260/C260M.
- G. Chemical Admixtures: ASTM C494/C494M.
- H. Reinforcing Steel: ASTM A615/A615M or ASTM A996/A996M, Grade 420 (60); deformed.
- I. Expansion Joint Filler: ASTM D1751.
- J. Sheet Materials for Curing Concrete: ASTM C171.
- K. Color Pigment: ASTM C979/C979M, colored and white powder pigments.

2.2 SELECT SUBBASE

- A. Subbase: AASHTO M147; Grade B or Grade C
 - Select granular material composed of sand, sand-gravel, crushed stone, crushed or granulated slag, with or without soil binder, or combinations of these materials.

SUBBASE GRADING REQUIREMENTS							
Sieve Size		Percentage Passing by Mass					
		Grades					
(mm)	(in)	A	В	С	D	E	F

SUBBASE GRADING REQUIREMENTS								
Sieve Size		Percentage Passing by Mass						
		Grades						
50	2	100	100					
25	1		75-95	100	100	100	100	
9.5	3/8	30-65	40-75	50-85	60-100			
4.47	No. 4	25-55	30-60	35-65	50-85	55-100	70-100	
2.00	No. 10	15-40	20-45	25-50	40-70	40-100	55-100	
0.425	No. 40	8-20	15-30	15-30	25-45	20-50	30-70	
0.075	No. 200	2-8	5-20	5-15	5-20	6-20	8-25	

B. Other Acceptable Gradations: Materials within three to five percent, plus or minus, of specified gradation, or as recommended by the geotechnical engineer and approved by the Contracting Officer's Representative.

2.3 FORMS

- A. Forms: Wood, plywood, metal, or other materials, approved by Contracting Officer's Representative, of grade or type suitable to obtain type of finish specified.
 - 1. Plywood: Exterior grade, free of defects and patches on contact surface.
 - 2. Lumber: Sound, grade-marked, S4S stress graded softwood, minimum 50 mm (2 inches) thick, free from warp, twist, loose knots, splits, or other defects.
 - 3. Form Coating: As recommended by Architect/Engineer.
- B. Provide forms suitable in cross-section, depth, and strength to resist springing during depositing and consolidating concrete.
 - 1. Do not use forms varying from straight line more than 3 mm in 3000 mm (1/8 inch in 10 feet), horizontally and vertically.
- C. Provide flexible or curved forms for forming radii.

2.4 CONCRETE CURING MATERIALS

- A. Concrete curing materials, conform to one of the following:
 - 1. Burlap: Minimum 233 g/sq. m (7 ounces/sq. yd.) dry.
 - 2. Sheet Materials for Curing Concrete: ASTM C171.
 - 3. Curing Compound: ASTM C309, Type 1 clear Type 1-D Type 2 ; liquid membrane forming type, without paraffin or petroleum.

2.5 CONCRETE MIXES

- A. Design concrete mixes according to ASTM C94/C94M, Option C.
- B. Concrete Type: Air-entrained . See Table I.

TABLE I - CONCRETE TYPES

Tuscaloosa VAMC Correct Failing Sanitary Sewer, Water Main, FP Deficiencies 100% Construction Documents Tuscaloosa, AL 35404

December 29, 2023 Project No: 679-21-102

Concrete	Minimum 28 Day	Non-Air-Entrained	d	Air-Entrained		
Туре	Compressive	Min. Cement	Max.	Min. Cement	Max.	
	Strength f'c	kg/cu. m	Water	kg/cu. m	Water	
	MPa (psi)	(lbs./cu. yd.)	Cement	(lbs./cu. yd.)	Cement	
			Ratio		Ratio	
A	35 (5000)1,3	375 (630)	0.45	385 (650)	0.40	
В	30 (4000)1,3	325 (550)	0.55	340 (570)	0.50	
С	25 (3000)1,3	280 (470)	0.65	290 (490)	0.55	
D	25 (3000)1,2	300 (500)	*	310 (520)	*	

Footnotes:

1. If trial mixes are used, achieve compressive strength 8.3 MPa (1,200 psi) in excess of f'c. For concrete strengths greater than 35 MPa (5,000 psi), achieve compressive strength 9.7 MPa (1,400 psi) in excess of f'c. 2. For Concrete Exposed to High Sulfate Content Soils: Maximum water cement ratio is 0.44. 3. Laboratory Determined according to ACI 211.1 for normal weight concrete.

C. Maximum Slump: ASTM C143/C143M. See Table II.

TABLE II - MAXIMUM SLUMP				
APPLICATION	MAXIMUM SLUMP			
Curb & Gutter	75 mm (3 inches)			
Pedestrian Pavement	75 mm (3 inches)			
Vehicular Pavement	50 mm (2 inches) Machine Finished			
	100 mm (4 inches) Hand Finished			
Equipment Pad	75 to 100 mm (3 to 4 inches)			

2.6 ACCESSORIES

- A. Equipment and Tools: Obtain Contracting Officer's Representative's, approval of equipment and tools needed for handling materials and performing work before work begins.
- B. Maintain equipment and tools in satisfactory working condition.
- C. Sealants:
 - 1. Concrete Paving Expansion Joints: ASTM D5893/D5893M, Type SL, single component, self-leveling, silicone joint sealant.
 - 2. Concrete Paving Joints: ASTM D6690, Type IV, hot-applied, single component joint sealant.
- D. Concrete Protective Coating: AASHTO M233 linseed oil mixture.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Examine and verify substrate suitability for product installation.
- B. Protect existing construction and completed work from damage.
- C. Prepare, construct, and finish subgrade. See Section 31 20 00, EARTHWORK.

Tuscaloosa VAMC Correct Failing Sanitary Sewer, Water Main, FP Deficiencies 100% Construction Documents Tuscaloosa, AL 35404

D. Maintain subgrade in smooth, compacted condition, in conformance with the required section and established grade until the succeeding operation has been accomplished.

3.2 SELECT SUBBASE

- A. Placing:
 - 1. Place subbase material on prepared subgrade in uniform layer to required contour and grades, and to maximum 200 mm (8 inches) loose depth.
 - 2. When required compacted thickness exceeds 150 mm (6 inches), place subbase material in equal thickness layers.
 - 3. When subbase elevation is 13 mm (1/2 inch) or more below required grade, excavate subbase minimum 75 mm (3 inches) deep. Place and compact subbase to required grade.
- B. Compaction:
 - 1. Perform compaction with approved hand or mechanical equipment well suited to the material being compacted.
 - 2. Maintain subbase at optimum moisture content for compaction.
 - 3. Compact each subbase layer to minimum 95 percent or 100 percent of maximum density as specified in Section 31 20 11, EARTHWORK.
- C. Subbase Tolerances:
 - 1. Variation from Indicated Grade: Maximum 9 mm (3/8 inch).
 - 2. Variation from Indicated Thickness: Maximum 13 mm (1/2 inch).
- D. Protection:
 - 1. Protect subbase from damage until concrete is placed.
 - 2. Reconstruct damaged subbase before placing concrete.

3.3 SETTING FORMS

- A. Form Substrate:
 - 1. Compact form substrate to uniformly support forms along entire length.
 - 2. Correct substrate imperfections and variations by cutting, filling, and compacting.
- B. Form Setting:
 - 1. Set forms to indicated line and grade with tight joints. Rigidly brace forms preventing movement.
 - 2. Remove forms when removal will not damage concrete and when required for finishing.
 - 3. Clean and oil forms before each use.
 - 4. Correct forms, when required, immediately before placing concrete.

- C. Land Surveyor: Establish control, alignment, and grade for forms and slip forming machine operations .
 - 1. Notify Contracting Officer's Representative immediately when discrepancies exist between field conditions and drawings.
 - Correct discrepancies greater than 25 mm (1 inch) before placing concrete.
- D. Form Tolerances:
 - 1. Variation from Indicated Line: Maximum 6 mm (1/4 inch).
 - Variation from Indicated Grade: Maximum 3 mm in 3000 mm (1/8 inch in 10 feet).

3.4 PLACING REINFORCEMENT

- A. Keep reinforcement clean from contamination preventing concrete bond.
- B. Install reinforcement shown on drawings.
- C. Support and securely tie reinforcing steel to prevent displacement during concrete placement.
- D. Obtain Contracting Officer's Representative's reinforcement placement approval before placing concrete.

3.5 JOINTS - GENERAL

- A. Place joints, where shown on approved submittal Drawings.
 - 1. Conform to details shown.
 - 2. Install joints perpendicular to finished concrete surface.
- B. Make joints straight and continuous from edge to edge of pavement.

3.6 CONSTRUCTION JOINTS

- A. Locate longitudinal and transverse construction joints between slabs of vehicular pavement as shown on approved submittal Drawings.
- B. Place transverse construction joints of type shown, where indicated, and whenever concrete placement is suspended for more than 30 minutes.
- C. Provide butt-type joint in curb and gutter at planned joint locations.
- D. Provide keyed joints with tie bars when joint occurs in middle third of planned curb and gutter joint interval.

3.7 CONTRACTION JOINTS

- A. Tool or cut joints to width, depth, and radius edge shown on drawings using grooving tool, jointer, or saw.
- B. Construct joints in curbs and gutters by inserting 3 mm (1/8 inch) steel plates conforming to curb and gutter cross sections.
 - 1. Keep plates in place until concrete can hold its shape.

- C. Finish joint edges with edging tool.
- D. Score pedestrian pavement with grooving tool or jointer.

3.8 EXPANSION JOINTS

- A. Form expansion joints with expansion joint filler of thickness shown on drawings.
 - Locate joints around perimeter of structures and features abutting site work concrete.
 - Create complete, uniform separation between structure and site work concrete.
- B. Extend expansion joint material full depth of concrete with top edge of joint filler below finished concrete surface where sealant is indicated on Drawings.
- C. Cut and shape material matching cross section.
- D. Anchor with approved devices to prevent displacing during placing and finishing operations.
- E. Round joint edges with edging tool.

3.9 PLACING CONCRETE - GENERAL

- A. Preparation before Placing Concrete:
 - 1. Obtain Contracting Officer's Representative approval.
 - 2. Remove debris and other foreign material.
 - 3. Uniformly moisten substrate, without standing water.
- B. Convey concrete from mixer to final location without segregation or loss of ingredients. Deposit concrete to minimize handling.
- C. During placement, consolidate concrete by spading or vibrating to minimize voids, honeycomb, and rock pockets.
 - 1. Vibrate concrete against forms and along joints.
 - 2. Avoid excess vibration and handling causing segregation.
- D. Place concrete continuously between joints without bulkheads.
- E. Install construction joint in concrete placement suspended for more than 30 minutes.
- F. Replace concrete with cracks, chips, bird baths, and other defects to nearest joints, approved by Contracting Officer's Representative.
- 3.10 PLACING CONCRETE FOR CURB AND GUTTER, PEDESTRIAN PAVEMENT, AND EQUIPMENT PADS
 - A. Place concrete in one layer conforming to cross section shown on Drawings after consolidating and finishing.

- B. Deposit concrete near joints without disturbing joints. Do not place concrete directly onto joint assemblies.
- C. Strike concrete surface to proper section ready for consolidation.
- D. Consolidate concrete by tamping and spading or with approved mechanical finishing equipment.
- E. Finish concrete surface with wood or metal float.
- F. Construct concrete pads and pavements with sufficient slope to drain, preventing standing water.

3.11 PLACING CONCRETE FOR VEHICULAR PAVEMENT

- A. Deposit concrete as close as possible to its final position.
- B. Place concrete continuously between construction joints without cold joints.
- C. Strike and consolidate concrete with finishing machine, vibrating screed, or by hand-finishing.
- D. Finish concrete surface to elevation and crown shown on drawings.
- E. Deposit concrete near joints without disturbing joints. Do not place concrete directly onto joint assemblies.
- F. Obtain Contracting Officer's Representative's approval before placing adjacent lanes.
- G. Curb-Forming Machines: Curb-forming machines for constructing integral curbs or curbs and gutter will be approved based on trial use on the project. When equipment produces unsatisfactory results, discontinue use of the equipment at any time during construction and accomplish work by hand method construction. Remove unsatisfactory work and reconstruct full length between regularly scheduled joints. Dispose of removed portions off the project site.

3.12 FORM REMOVAL

- A. Keep forms in place minimum 12 hours after concrete placement. Remove forms without damaging concrete.
- B. Do not use bars or heavy tools against concrete to remove forms. Repair damage concrete found after form removal.

3.13 CONCRETE FINISHING - GENERAL

- A. Follow operation sequence below, unless otherwise indicated on Drawings:
 - Consolidating, floating, striking, troweling, texturing, and joint edging.

- B. Use edging tool with 6 mm (1/4 inch) radius, unless otherwise shown on Drawings .
- C. Keep finishing equipment and tools clean and suitable for use.

3.14 CONCRETE FINISHING - PEDESTRIAN PAVEMENT

- A. Walks, Grade Slabs, Lawn Mower Crossings, Wheelchair Curb Ramps, Terraces, Healing Gardens :
 - Finish concrete surfaces with metal float, troweled smooth, and finished with a broom moistened with clear water.
 - 2. Finish slab edges and formed transverse joints with edger.
 - 3. Broom surfaces transverse to traffic direction.
 - a. Use brooming to eliminate flat surface produced by edger.
 - b. Produce uniform corrugations, maximum 1.5 mm (1/16 inch) deep profile.
 - Provide surface uniform in color and free of surface blemishes, form marks, and tool marks.
 - 5. Paving Tolerances:
 - a. Variation from Indicated Plane: Maximum 5 mm in 3000 mm (3/16 inch in 10 feet).
 - b. Variation from Indicated Thickness: Maximum 6 mm (1/4 inch).
 - Replace paving within joint boundary when paving exceeds specified tolerances.
- B. Step Treads, Risers and Sidewalls: Finish as described in 3.14 CONCRETE FINISHING - PEDESTRIAN PAVEMENT for pedestrian pavement, except as follows:
 - 1. Remove riser forms sequentially, starting with top riser.
 - Rub riser face with wood or concrete rubbing block and water. Remove blemishes, form marks, and tool marks. Use outside edger to round nosing; use inside edger to finish bottom of riser.
 - 3. Apply uniform brush finish to treads, risers, and sidewall.
 - Apply stiff brush finish to treads to provide slip resistant surface complying with ANSI B101.3.
 - 4. Step Tolerance:
 - a. Variation from Indicated Plane: Maximum 5 mm in 3000 mm (3/16 inch in 10 feet).

3.15 CONCRETE FINISHING - VEHICULAR PAVEMENT

A. Align finish surfaces where new and existing pavements abut.

Tuscaloosa VAMC Correct Failing Sanitary Sewer, Water Main, FP Deficiencies 100% Construction Documents Tuscaloosa, AL 35404

- B. Longitudinally float pavement surface to profile and grade indicated on drawings.
- C. Straighten surface removing irregularities and maintaining specified tolerances while concrete is plastic.
- D. Finish pavement edges and joints with edging tool.
- E. Broom finish concrete surface after bleed water dissipates and before concrete hardens.
 - 1. Broom surface transverse to traffic direction.
 - a. Use brooming to eliminate flat surface produced by edger.
 - b. Produce uniform corrugations, maximum 3 mm (1/8 inch) deep profile.
- F. Pavement Tolerances:
 - 1. Variation from Indicated Plane: Maximum 6 mm in 3000 mm (1/4 inch in 10 feet) tested parallel and perpendicular to traffic direction at maximum 1500 mm (5 feet) intervals.
 - 2. Variation from Indicated Thickness: Maximum 6 mm (1/4 inch).
- G. Replace paving within joint boundary when paving exceeds specified tolerances.

3.16 CONCRETE FINISHING - CURBS AND GUTTERS

- A. Round edges of gutter and top of curb with edging tool.
- B. Gutter and Curb Top:
 - 1. Float surfaces and finish with smooth wood or metal float until true to grade and section and uniform color.
 - 2. Finish surfaces, while still plastic, longitudinally with bristle brush.
- C. Curb Face:
 - 1. Remove curb form and immediately rub curb face with wood or concrete rubbing block removing blemishes, form marks, and tool marks and providing uniform color.
 - 2. Brush curb face, while still plastic, matching gutter and curb top.
- D. Curb and Gutter Tolerances: Except at grade changes or curves.
 - 1. Variation from Indicated Plane and Grade:
 - a. Gutter: Maximum 3 mm in 3000 mm (1/8 inch in 10 feet).
 - b. Curb Top and Face: Maximum 6 mm in 3000 mm (1/4 inch in 10 feet).
- E. Replace curbs and gutters within joint boundary when curbs and gutters exceed specified tolerances.
- F. Correct depressions causing standing water.

3.17 CONCRETE FINISHING - EQUIPMENT PADS

- A. Strike pad surface to elevation shown on Drawings.
- B. Provide smooth, dense float finish, free from depressions or irregularities.
- C. Finish pad edges with edger.
- D. After removing forms, rub pad edge faces with wood or concrete rubbing block, removing blemishes, form marks, and tool marks and providing uniform color.
- E. Pad Tolerances:
 - Variation from Indicated Plane: Maximum 3 mm in 3000 mm (1/8 inch in 10 feet).
 - 2. Variation from Indicated Elevation: Maximum 6 mm (1/4 inch).
 - 3. Variation from Indicated Thickness: Maximum 6 mm (1/4 inch).
- F. Replace pads when pads exceed specified tolerances.

3.18 SPECIAL FINISHES

- A. Exposed Aggregate Finish:
 - Prepare concrete base 10 to 13 mm (3/8 to 1/2 inch) lower than the finish grade.
 - 2. Scatter aggregate over concrete base surface and embed by use of hand float, straight edge, or darby.
 - 3. Apply concrete mix and mark off surface as indicated on Drawings with surface joints at least 10 mm (3/8 inch) deep. Level off finish to a true surface and compact with wood float, working as little as possible so that coarse material will remain at the top. Before finish has set, treat top surface with cement retarding material. When body of concrete finish has set, remove retarded surface film by wire brushes and fine water spray to remove mortar from top of colored aggregate. Continue washing and brushing until flush water runs clear and no noticeable cement film left on the aggregate.

3.19 CONCRETE CURING

- A. Concrete Protection:
 - 1. Protect unhardened concrete from rain and flowing water.
 - Provide sufficient curing and protection materials available and ready for use before concrete placement begins.
 - 3. Protect concrete to prevent pavement cracking from ambient temperature changes during curing period.

- a. Replace pavement damaged by curing method allowing concrete cracking.
- Employ another curing method as directed by Contracting Officer's Representative.
- B. Cure concrete for minimum 7 days by one of the following methods appropriate to weather conditions preventing moisture loss and rapid temperature change:
 - Burlap Mat: Provide minimum two layers kept saturated with water during curing period. Overlap Mats at least 150 mm (6 inches).
 - 2. Sheet Materials:
 - a. Wet exposed concrete surface with fine water spray and cover with sheet materials.
 - b. Overlap sheets minimum 300 mm (12 inches).
 - c. Securely anchor sheet materials preventing displacement.
 - 3. Curing Compound:
 - Protect joints indicated to receive sealants preventing contamination from curing compound.
 - b. Insert moistened paper or fiber rope into joint or cover joint with waterproof paper.
 - c. Apply curing compound before concrete dries.
 - d. Apply curing compound in two coats at right angles to each other.
 - e. Application Rate: Maximum 5 sq. m/L (200 sq. ft./gallon), both coats.
 - Immediately reapply curing compound to surfaces damaged during curing period.

3.20 CONCRETE PROTECTIVE COATING

- A. Apply protective coating of linseed oil mixture to exposed-to-view concrete surfaces, drainage structures, and features that project through, into, or against concrete exterior improvements to protect the concrete against deicing materials.
- B. Complete backfilling and curing operation before applying protective coating.
- C. Dry and thoroughly clean concrete before each application.
- D. Apply two coats, with maximum coverage of 11 sq. m/L (50 sq. yds./gal.); first coat, and maximum 16 sq. m/L (70 sq. yds./gal.); second coat, except apply commercially prepared mixture according to manufacturer's instructions.

- E. Protect coated surfaces from vehicular and pedestrian traffic until dry.
- F. Do not heat protective coating, and do not expose protective coating to open flame, sparks, or fire adjacent to open containers or applicators. Do not apply material at temperatures lower than 10 degrees C (50 degrees F).

3.21 FIELD QUALITY CONTROL

- A. Field Tests: Performed by testing laboratory specified in Section 01 45 29, TESTING LABORATORY SERVICES.
 - 1. Compaction.
 - a. Pavement subgrade.
 - b. Curb, gutter, and sidewalk.
 - 2. Concrete:
 - a. Delivery samples.
 - b. Field samples.
 - 3. Slip Resistance: Steps and pedestrian paving.

3.22 CLEANING

- A. After completing curing:
 - 1. Remove burlap and sheet curing materials.
 - 2. Sweep concrete clean, removing foreign matter from the joints.
 - 3. Seal joints as specified in paragraph 2.6 ACCESSORIES C. Sealants in this section.

3.23 PROTECTION

- A. Protect exterior improvements from traffic and construction operations.
 - Prohibit traffic on paving for minimum seven days after placement, or longer as directed by Contracting Officer's Representative.
- B. Remove protective materials immediately before acceptance.
- C. Repair damage.
 - Replace concrete containing excessive cracking, fractures, spalling, and other defects within joint boundary, when directed by Contracting Officer's Representative, and at no additional cost to the Government.

- - - E N D - - -

SECTION 32 12 16 ASPHALT PAVING

PART 1 - GENERAL

1.1 DESCRIPTION

This work shall cover the composition, mixing, construction upon the prepared subgrade, and the protection of hot asphalt concrete pavement. The hot asphalt concrete pavement shall consist of an aggregate or asphalt base course and asphalt surface course constructed in conformity with the lines, grades, thickness, and cross sections as shown on the drawings. Each course shall be constructed to the depth, section, or elevation required by the drawings and shall be rolled, finished, and approved before the placement of the next course.

1.2 RELATED WORK

- A. Laboratory and field testing requirements: Section 01 45 29, TESTING LABORATORY SERVICES.
- B. Subgrade Preparation: Paragraph 3.3 and Section 31 20 11, EARTHWORK.

1.3 INSPECTION OF PLANT AND EQUIPMENT

The Resident Engineer shall have access at all times to all parts of the material producing plants for checking the mixing operations and materials and the adequacy of the equipment in use.

1.4 ALIGNMENT AND GRADE CONTROL

The Contractor's Registered Professional Land Surveyor shall establish and control the pavement (aggregate or asphalt base course and asphalt surface course) alignments, grades, elevations, and cross sections as shown on the Drawings.

1.5 SUBMITTALS

- A. In accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, furnish the following:
- B. Data and Test Reports:
 - 1. Aggregate Base Course: Sources, gradation, liquid limit, plasticity index, percentage of wear, and other tests required by State Highway Department.
 - 2. Asphalt Base/Surface Course: Aggregate source, gradation, soundness loss, percentage of wear, and other tests required by State Highway Department.
 - 3. Job-mix formula.
- C. Certifications:

- Asphalt prime and tack coat material certificate of conformance to State Highway Department requirements.
- 2. Asphalt cement certificate of conformance to State Highway Department requirements.
- 3. Job-mix certification Submit plant mix certification that mix equals or exceeds the State Highway Specification.
- D. One copy of State Highway Department Specifications.
- E. Provide MSDS (Material Safety Data Sheets) for all chemicals used on ground.

PART 2 - PRODUCTS

2.1 GENERAL

A. Aggregate base, Asphaltic base and asphalt concrete materials shall conform to the requirements of the following and other appropriate sections of the latest version of the State Highway Material Specifications, including amendments, addenda and errata. Where the term "Engineer" or "Commission" is referenced in the State Highway Specifications, it shall mean the VA Resident Engineer or VA Contracting Officer.

2.2 AGGREGATES

- A. Provide aggregates consisting of crushed stone, gravel, sand, or other sound, durable mineral materials processed and blended, and naturally combined.
- B. Subbase aggregate (where required) maximum size: 38mm(1-1/2").
- C. Base aggregate maximum size:
 - 1. Base course over 152mm(6") thick: 38mm(1-1/2");
 - 2. Other base courses: 19mm(3/4").
- D. Asphaltic base course:
 - 1. Maximum particle size not to exceed 25.4mm(1").
 - 2. Where conflicts arise between this specification and the requirements in the latest version of the State Highway Specifications, the State Specifications shall control.
- E. Aggregates for asphaltic concrete paving: Provide a mixture of sand, mineral aggregate, and liquid asphalt mixed in such proportions that the percentage by weight will be within:

<u>Sieve Sizes</u>	Percentage Passing
19mm(3/4")	100
9.5mm(3/8")	67 to 85
6.4mm(1/4")	50 to 65
2.4mm(No. 8 mesh)	37 to 50
600µm(No. 30 mesh)	15 to 25
75µm(No. 200 mesh)	3 to 8

plus 50/60 penetration liquid asphalt at 5 percent to 6-1/2 percent of the combined dry aggregates.

2.3 ASPHALTS

- A. Comply with provisions of Asphalt Institute Specification SS2:
 - 1. Asphalt cement: Penetration grade 50/60
 - 2. Prime coat: Cut-back type, grade MC-250
 - 3. Tack coat: Uniformly emulsified, grade SS-1H

2.4 SEALER

- A. Provide a sealer consisting of suitable fibrated chemical type asphalt base binders and fillers having a container consistency suitable for troweling after thorough stirring and containing no clay or other deleterious substance.
- B. Where conflicts arise between this specification and the requirements in the latest version of the State Highway Specifications, the State Specifications shall control.

PART 3 - EXECUTION

3.1 GENERAL

The Asphalt Concrete Paving equipment, weather limitations, job-mix formula, mixing, construction methods, compaction, finishing, tolerance, and protection shall conform to the requirements of the appropriate sections of the State Highway Specifications for the type of material specified.

3.2 MIXING ASPHALTIC CONCRETE MATERIALS

- A. Provide hot plant-mixed asphaltic concrete paving materials.
 - Temperature leaving the plant: 143 degrees C(290 degrees F) minimum, 160 degrees C(320 degrees F) maximum.
 - 2. Temperature at time of placing: 138 degrees C(280 degrees F) minimum.

3.3 SUBGRADE

- A. Shape to line and grade and compact with self-propelled rollers.
- B. All depressions that develop under rolling shall be filled with acceptable material and the area re-rolled.
- C. Soft areas shall be removed and filled with acceptable materials and the area re-rolled.
- D. Should the subgrade become rutted or displaced prior to the placing of the subbase, it shall be reworked to bring to line and grade.
- E. Proof-roll the subgrade with maximum 45 ton gross weight dump truck as directed by VA Resident Engineer or VA Contracting Officer. If pumping, pushing, or other movement is observed, rework the area to provide a stable and compacted subgrade.

3.4 BASE COURSES

A. Subbase (when required)

- 1. Spread and compact to the thickness shown on the drawings.
- 2. Rolling shall begin at the sides and continue toward the center and shall continue until there is no movement ahead of the roller.
- 3. After completion of the subbase rolling there shall be no hauling over the subbase other than the delivery of material for the top course.
- B. Base
 - 1. Spread and compact to the thickness shown on the drawings.
 - 2. Rolling shall begin at the sides and continue toward the center and shall continue until there is no movement ahead of the roller.
 - 3. After completion of the base rolling there shall be no hauling over the base other than the delivery of material for the top course.
- C. Thickness tolerance: Provide the compacted thicknesses shown on the Drawings within a tolerance of minus 0.0mm (0.0") to plus 12.7mm (0.5").
- D. Smoothness tolerance: Provide the lines and grades shown on the Drawings within a tolerance of 5mm in 3m (3/16 inch in ten feet).
- E. Moisture content: Use only the amount of moisture needed to achieve the specified compaction.

3.5 PLACEMENT OF ASPHALTIC CONCRETE PAVING

- A. Remove all loose materials from the compacted base.
- B. Apply the specified prime coat, and tack coat where required, and allow to dry in accordance with the manufacturer's recommendations as approved by the Architect or Engineer.
- C. Receipt of asphaltic concrete materials:

- Do not accept material unless it is covered with a tarpaulin until unloaded, and unless the material has a temperature of not less than 130 degrees C(280 degrees F).
- Do not commence placement of asphaltic concrete materials when the atmospheric temperature is below 10 degrees C (50 degrees F), not during fog, rain, or other unsuitable conditions.
- D. Spreading:
 - 1. Spread material in a manner that requires the least handling.
 - 2. Where thickness of finished paving will be 76mm (3") or less, spread in one layer.
- E. Rolling:
 - After the material has been spread to the proper depth, roll until the surface is hard, smooth, unyielding, and true to the thickness and elevations shown own the drawings.
 - 2. Roll in at least two directions until no roller marks are visible.
 - 3. Finished paving smoothness tolerance:
 - a. No depressions which will retain standing water.
 - b. No deviation greater than 3mm in 1.8m (1/8" in six feet).

3.6 APPLICATION OF SEAL COAT

- A. Prepare the surfaces, mix the seal coat material, and apply in accordance with the manufacturer's recommendations as approved by the Architect or Engineer.
- B. Achieve a finished surface seal which, when dry and thoroughly set, is smooth, tough, resilient, of uniform black color, and free from coarse textured areas, lap marks, ridges, and other surface irregularities.
- C. When sealing new asphalt paving wait an entire year to allow for the expansion and contraction of a year's cycle of both warm and cool temperatures. This allows for the asphalt's oils to properly cure and begin oxidation before applying a seal coat.
- D. When seal coating in less than a year apply two coats, spray applied. This application method is preferred for less than a year application when there is still plenty of asphalt cement present for the seal coat to bond to.

3.7 PROTECTION

Protect the asphaltic concrete paved areas from traffic until the sealer is set and cured and does not pick up under foot or wheeled traffic.

3.8 FINAL CLEAN-UP

Remove all debris, rubbish, and excess material from the work area.

- - - E N D - - -

SECTION 33 10 00

WATER UTILITIES

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies materials and procedures for construction of underground water distribution for domestic and/or fire supply systems outside the building that are complete and ready for operation. This includes piping, structures, appurtenances, and all other incidentals.

1.2 RELATED WORK

- A. Excavation, Trench Widths, Pipe Bedding, Backfill, Shoring, Sheeting, Bracing: Section 31 20 11, EARTHWORK.
- B. Concrete: Section 03 30 53 (SHORT FORM) CAST-IN-PLACE CONCRETE.
- C. Submittals: Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES.
- D. Metering: Section 25 10 10, ADVANCED UTILITY METERING SYSTEM.
- E. Erosion and Sediment Control: Section 01 57 19, TEMPORARY ENVIRONMENTAL CONTROLS.

1.3 DEFINITIONS

- A. Water distribution system: Pipelines and appurtenances which are part of the distribution system outside the building for potable water and fire supply.
- B. Water service line: Pipeline from main line to 5 feet outside of building.

1.4 ABBREVIATIONS

- A. PVC: Polyvinyl chloride plastic.
- B. DI: Ductile iron pipe.
- C. WOG: Water, Oil and Gas.

1.5 DELIVERY, STORAGE AND HANDLING

- A. Ensure that valves are dry and internally protected against rust and corrosion. Protect valves against damage to threaded ends and flange faces.
- B. Use a sling to handle valves and fire hydrants if size requires handling by crane or lift. Rig valves to avoid damage to exposed parts. Do not use handwheels or stems as lifting or rigging points.
- C. Deliver piping with factory-applied end caps. Maintain end caps through shipping, storage, and handling to prevent pipe-end damage and to prevent entrance of dirt, debris, and moisture.
- D. Protect stored piping from moisture and dirt by elevating above grade. Protect flanges, fittings, and specialties from moisture and dirt.

- E. Store plastic piping protected from direct sunlight and support to prevent sagging and bending.
- F. Cleanliness of Piping and Equipment Systems:
 - Care shall be exercised in the storage and handling of equipment and piping material to be incorporated in the work. Debris arising from cutting, threading and welding of piping shall be removed.
 - Piping systems shall be flushed, blown or pigged as necessary to deliver clean systems.

1.6 COORDINATION

- A. Coordinate connection to water main with Public Utility company.
- B. Coordinate water service lines with building contractor.

1.7 QUALITY ASSURANCE:

- A. Products Criteria:
 - When two or more units of the same type or class of materials or equipment are required, these units shall be products of one manufacturer.
 - 2. A nameplate bearing manufacturer's name or trademark, including model number, shall be securely affixed in a conspicuous place on equipment. In addition, the model number shall be either cast integrally with equipment, stamped, or otherwise permanently marked on each item of equipment.
 - 3. Materials and equipment shall be the standard products of a manufacturer regularly engaged in the manufacture of the products for at least three years. Digital electronic devices, software and systems such as controls, instruments or computer workstations shall be the current generation of technology and basic design that has a proven satisfactory service record of at least three years.
 - 4. Regulatory requirements:
 - a. Comply with the rules and regulations of the public utility company having jurisdiction over the connection to public water lines and the extension and/or modifications to public utility systems.
 - b. Comply with the rules and regulations of the Federal State and/or Local Health Department, Department of Environmental Quality having jurisdiction for potable water-service.

- c. Comply with rules and regulations of Federal State and/or Local authorities having jurisdiction for fire-suppression water-service piping including materials, hose threads, installation and testing.
- Provide certification of factory hydrostatic testing of not less than 500 psi (3.5 MPa) in accordance with AWWA C151. Piping materials shall bear the label, stamp or other markings of the specified testing agency.
- 6. Before any welding is performed, contractor shall submit a certificate certifying that welders comply with the following requirements:
 - Qualify welding processes and operators for piping according to ASME "Boiler and Pressure Vessel Code", Section IX, "Welding and Brazing Qualifications".
 - b. Comply with provisions of ASME B31 series "Code for Pressure Piping".
 - c. Certify that each welder has passed American Welding Society (AWS) qualification tests for the welding processes involved, and that certification is current.
 - d. All welds shall be stamped according to the provisions of the American Welding Society.
- 7. Where installation procedures or any part thereof are required to be in accordance with the recommendations of the manufacturer of the material being installed, printed copies of these recommendations shall be furnished to the Resident Engineer prior to installation.
- 8. Applicable codes:
- a. Plumbing Systems: IPC, International Plumbing Code.
- b. Electrical components, devices and accessories shall be listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction and marked for intended use.
- c. Fire-service main products shall be listed in the FM Global "Approval Guide" or Underwriters

Laboratories (UL) "Fire Protection Equipment Directory".

1.8 APPLICABLE PUBLICATIONS

A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.

American National Standards Institute (ANSI):

MSS SP-60-2004Connecting Flange Joint Between Tapping Sleeves and Tapping Valves

MSS SP-108-2002.....Resilient-Seated Cast Iron, Eccentric Plug Valves

MSS SP-123-1998(R2006)..Non-Ferrous Threaded and Solder-Joint Unions for Use With Copper Water Tube

American Society of Mechanical Engineers (ASME):

A112.1.2-2004.....Air Gaps in Plumbing Systems (for Plumbing Fixtures and Water-Connected Receptors))

A112.6.3-2001.....Floor Drains

B16.1-2010.....Gray Iron Pipe Flanges and Flanged Fittings, Class 25, 125, 250

B16.18-2001.....Cast Copper Alloy Solder Joint Pressure Fittings

B16.22-2001.....Wrought Copper and Copper Alloy Solder Joint Pressure Fittings

B16.24-2006.....Cast Copper Alloy Pipe Flanges and Flanged Fittings; Classes 150, 300, 600, 900, 1500 and 2500

B31..... Piping Standards

American Society for Testing and Materials (ASTM):

A36/A36M-08.....Carbon Structural Steel

A48/A48M-08(2008).....Gray Iron Castings

A536-84(2009).....Ductile Iron Castings

A674-10.....Polyethylene Encasement for Ductile Iron Pipe for Water or Other Liquids

B61-08.....Steam or Valve Bronze Castings B62-09.....Composition Bronze or Ounce Metal Castings B88/B88M-09.....Seamless Copper Water Tube C651-05.....Disinfecting Water Mains C858-10e1.....Underground Precast Utility Structures D1785-06.....Poly (Vinyl Chloride) (PVC) Plastic Pipe, Schedules 40, 80, and 120 D2239-03.....Polyethylene (PE) Plastic Pipe (SIDR-PR) Based on Controlled Inside Diameter D2464-06..... Threaded Poly (Vinyl Chloride) PVC Pipe Fittings, Schedule 80 D2466-06.....Poly (Vinyl Chloride) (PVC) Pipe Fittings, Schedule 40 D2467-06.....Poly (Vinyl Chloride) (PVC) Plastic Pipe Fittings, Schedule 80 D2609-02(2008).....Plastic Insert Fittings for Polyethylene (PE) Plastic Pipe D3350-10a.....Polyethylene Plastics Pipe and Fittings Materials F714-10.....Polyethylene (PE) Plastic Pipe (SDR-PR) Based on Outside Diameter F1267-07.....Metal, Expanded, Steel American Water Works Association (AWWA): B300-10.....Hypochlorites B301-10.....Liquid Chlorine C104-08.....Cement-Mortar Lining for Ductile Iron Pipe and Fittings C105/A21.5-10.....Polyethylene Encasement for Ductile Iron Pipe Systems C110-08..... Ductile Iron and Gray-Iron Fittings
Tuscaloosa VAMC December 29, 2023 Correct Failing Sanitary Sewer, Water Main, FP Deficiencies 100% Construction Documents Tuscaloosa, AL 35404 Project No: 679-21-102 C111/A21.11-07.....Rubber-Gasket Joints for Ductile Iron Pressure Pipe and Fittings C115/A21.11-11.....Flanged Ductile Iron Pipe with Ductile Iron or Gray-Iron Threaded Flanges C151/A21.51-09.....Ductile Iron Pipe, Centrifugally Cast C153/A21.53-11.....Ductile Iron Compact Fittings for Water Service C502-05.....Dry-Barrel Fire Hydrants C503-05.....Wet-Barrel Fire Hydrants C504-10.....Rubber-Seated Butterfly Valves C508-09.....Swing-Check Valves for Waterworks Service, 2-In. Through 24-In. (50-mm Through 600-mm) NPS C509-09.....Resilient-Seated Gate Valves for Water Supply Service C510-07.....Double Check Valve Backflow Prevention Assembly C511-07.....Reduced-Pressure Principle Backflow Prevention Assembly C512-07.....Air Release, Air/Vacuum and Combination Air Valves C550-05.....Protective Interior Coatings for Valves and Hydrants C600-10..... Installation of Ductile Iron Mains and Their Appurtenances C605-11......Underground Installation of Polyvinyl Chloride (PVC) Pressure Pipe and Fittings for Water C606-11.....Grooved and Shouldered Joints C651-05.....Disinfecting Water Mains C700-09.....Cold-Water Meters, "Displacement Type," Bronze Main Case C800-05.....Underground Service Line Valves and Fittings

December 29, 2023 Tuscaloosa VAMC Correct Failing Sanitary Sewer, Water Main, FP Deficiencies 100% Construction Documents Tuscaloosa, AL 35404 Project No: 679-21-102 C900-09..... Polyvinyl Chloride (PVC) Pressure Pipe and Fabricated Fittings, 4 In. Through 12 In. (100 mm Through 300 mm), for Water Transmission and Distribution C906-07..... Polyethylene (PE) Pressure Pipe and Fittings, 4 In. (100 mm) Through 64 In. (1,600 mm), for Water Distribution and Transmission C907-04..... Injection-Molded PVC Pressure Fittings, 4 Inch through 12 Inch (100 mm through 300 mm), for Water Distribution M23-2nd Ed.....PVC Pipe, Design and Installation M44-2nd Ed.....Distribution Valves: Selection, Installation, Field Testing and Maintenance National Fire Protection Association (NFPA): NFPA 24-2010 Ed.....Installation of Private Fire Service Mains and Their Appurtenances NFPA 1963-2009 Ed.....Fire Hose Connections NSF International (NSF): NSF/ANSI 14 (2013).....Plastics Piping System Components and Related Materials NSF/ANSI 61-2012.....Drinking Water System Components - Health Effects NSF/ANSI 372-2011.....Drinking Water System Components - Lead Content American Welding Society (AWS): A5.8/A5.8M-2004Filler Metals for Brazing and Braze Welding American Society of Safety Engineers (ASSE): 1003-2009Water Pressure Reducing Valves 1015-2009.....Double Check Backflow Prevention Assemblies and Double Check Fire Protection Backflow Prevention Assemblies 1020-2004..... Pressure Vacuum Breaker Assembly

December 29, 2023 Tuscaloosa VAMC Correct Failing Sanitary Sewer, Water Main, FP Deficiencies 100% Construction Documents Tuscaloosa, AL 35404 Project No: 679-21-102 1047-2009..... Performance Requirements for Reduced Pressure Detector Fire Protection Backflow Prevention Assemblies 1048-2009..... Performance Requirements for Double Check Detector Fire Protection Backflow Prevention Assemblies 1060-2006..... Performance Requirements for Outdoor Enclosures for Fluid Conveying Components Underwriters' Laboratories (UL): 262.....Gate Valves for Fire-Protection Service 312.....Check Valves for Fire-Protection Service 405..... Fire Department Connection Devices 753.....Alarm Accessories for Automatic Water-Supply Control Valves for Fire Protection Service 789..... Indicator Posts for Fire-Protection Service 1091.....Butterfly Valves for Fire-Protection Service 1285.....Pipe and Couplings, Polyvinyl Chloride (PVC), and Oriented Polyvinyl Chloride (PVCO) for Underground Fire Service

1.9 WARRANTY

A. The Contractor shall remedy any defect due to faulty material or workmanship and pay for any damage to other work resulting therefrom within a period of one year from final acceptance. Further, the Contractor will furnish all manufacturers' and supplier's written guarantees and warranties covering materials and equipment furnished under this Contract.

PART 2 - PRODUCTS

2.1 MATERIALS

A. Material or equipment containing a weighted average of greater than 0.25 percent lead shall not be used in any potable water system intended for human consumption and shall be certified in accordance with NSF/ANSI 61 or NSF 372.

B. Plastic pipe, fittings, and solvent cement shall meet NSF/ANSI 14 and shall be NSF listed for the service intended.

2.2 FACTORY-ASSEMBLED PRODUCTS

A. Standardization of components shall be maximized to reduce spare part requirements. The contractor shall guarantee performance of assemblies of components and shall repair or replace elements of the assemblies as required to deliver specified performance of the complete assembly.

2.3 SAFETY GUARDS

A. All equipment shall have moving parts protected to prevent personal injury. Pump shafts and couplings shall be fully guarded by a sheet steel guard, covering coupling and shaft but not bearings. Material shall be minimum 16gauge sheet steel; ends shall be braked and drilled and attached to pump base with minimum of four 1/4 inch (6 mm) bolts. Reinforce guard as necessary to prevent side play forcing guard onto couplings.

2.4 LIFTING ATTACHMENTS

A. Equipment shall be provided with suitable lifting attachments to enable equipment to be lifted in its normal position. Lifting attachments shall withstand any handling conditions that might be encountered, without bending or distortion of shape, such as rapid lowering and braking of load.

2.5 DUCTILE IRON PIPE AND FITTINGS

- A. Mechanical-Joint, Ductile-Iron Pipe: AWWA C151, with mechanical-joint bell and plain spigot end unless grooved or flanged ends are indicated, 350 psi (2400 kPa).
 - 1. Mechanical-Joint, Ductile-Iron Fittings: AWWA C110, ductile- or grayiron standard pattern or AWWA C153, ductile-iron compact pattern.
 - 2. Glands, Gaskets, and Bolts: AWWA C111, ductile- or gray-iron glands, rubber gaskets, and steel bolts.
- B. Push-on-Joint, Ductile-Iron Pipe: AWWA C151, with push-on-joint bell and plain spigot end unless grooved or flanged ends are indicated, 350 psi (2400 kPa).
 - 1. Push-on-Joint, Ductile-Iron Fittings: AWWA C110, ductile- or gray-iron standard pattern or AWWA C153, ductile-iron compact pattern.
 - 2. Gaskets: AWWA C111, rubber.
- C. Grooved-Joint, Ductile-Iron Pipe: AWWA C151, with cut, round-grooved ends.
- D. Grooved-End, Ductile-Iron Pipe Appurtenances: ASTM A47, malleable-iron castings or ASTM A536, ductile-iron castings with dimensions matching pipe, 350 psi (3400 kPa).

E. Grooved-End, Ductile-Iron-Piping Couplings: AWWA C606, for ductile-ironpipe dimensions, Include ferrous housing sections, gasket suitable for water, and bolts and nuts.

1. Gaskets: AWWA C111.

2.6 POLYVINYL CHLORIDE PIPE AND FITTINGS

- A. PVC, Schedule 40 Pipe: ASTM D1785.
 - 1. PVC, Schedule 40 Socket Fittings: ASTM D2466.
- B. PVC, Schedule 80 Pipe: ASTM D1785.
 - 1. PVC, Schedule 80 Socket Fittings: ASTM D2467.
 - 2. PVC, Schedule 80 Threaded Fittings: ASTM D2464.
- C. PVC, AWWA Pipe: AWWA C900, Class 150, with bell end with gasket, and with spigot end.
 - 1. Comply with UL 1285 for fire-service mains if indicated.
 - 2. PVC Fabricated Fittings: AWWA C900, Class 150, with bell-and-spigot or double-bell ends. Include elastomeric gasket in each bell.
 - 3. PVC Molded Fittings: AWWA C907, Class 150, with bell-and-spigot or double-bell ends. Include elastomeric gasket in each bell.

2.7 PE PIPE AND FITTINGS

- A. PE, ASTM Pipe: ASTM D2239, SIDR No. 5.3, 7, or 9; with PE compound number required to give pressure rating not less than 160 psi (1100 kPa)
 - Insert Fittings for PE Pipe: ASTM D2609, made of PA, PP, or PVC with serrated male insert ends matching inside of pipe. Include bands or crimp rings.
 - 2. Molded PE Fittings: ASTM D3350, PE resin, socket- or butt-fusion type, made to match PE pipe dimensions and class.
- B. PE, AWWA Pipe: AWWA C906, DR No. 7.3, 9, or 9.3; with PE compound number required to give pressure rating not less than 160 psi (1100 kPa)
- C. PE, AWWA Fittings: AWWA C906, socket- or butt-fusion type, with DR number matching pipe and PE compound number required to give pressure rating not less than 160 psi (1100 kPa).
- D. PE, Fire-Service Pipe: ASTM F714, AWWA C906, or equivalent for PE water pipe; FMG approved, with minimum thickness equivalent to FMG Class 150
 - 1. Molded PE Fittings: ASTM D3350, PE resin, socket-or butt-fusion type, made to match PE pipe dimensions and class.

2.8 COPPER TUBE AND FITTINGS

A. Soft Copper Tubing: ASTM B88, Type K ASTM B88, Type A and ASTM B88, Type L ASTM B88, Type B water tube, annealed temper.

- B. Hard Copper Tubing: ASTM B88, Type K ASTM B88, Type A and ASTM B88, TypeL ASTM B88, Type B water tube, drawn temper.
- C. Fittings: ASME B16.18, cast copper alloy or ASME B16.22, wrought copper alloy, solder joint pressure fittings.
- D. Brazing Alloy: AWS A5.8/A5.8M, Classification BCuP.
- E. Bronze Flanges: ASME B16.24, Class 150, with solder joint ends. ASME B16.24, Class 300 flanges if required to match piping.
- F. Copper Unions: ANSI MSS SP-123, cast copper alloy, hexagonal-stock body with ball-and-socket, metal-to-metal seating surfaces and solder-joint or threaded ends.

2.9 VALVES

- A. Gate Valves: AWWA C509, Non-rising Stem, Resilient Seat, 200 psi (1380 kPa).
- B. Valves 3 inches (75 mm) and larger: Resilient seat valve with gray- or ductile iron body and bonnet; cast iron or bronze double-disc gate; bronze gate rings; non-rising bronze stem and stem nut.
- C. Interior and exterior coating: AWWA C550, thermo-setting or fusion epoxy.
- D. Underground valve nut: Furnish valves with 2 inch (50 mm) nut for socket wrench operation.
- E. Aboveground and pit operation: Furnish valves with hand wheels.
- F. End connections shall be mechanical joint be push on match main line pipe.
- G. Gate Valve Accessories and Specialties
- H. Tapping-Sleeve Assembly: ANSI MSS SP-60; sleeve and valve to be compatible with the drilling matching.
 - Tapping Sleeve: Cast or Ductile Iron or Stainless-Steel, two-piece bolted sleeve. Sleeve to match the size and type of pipe material being tapped.
 - Valve shall include one raised face flange mating tapping-sleeve flange.
 - 3. Valve Boxes: AWWA M44 with top section, adjustable extension of length required for depth of burial of valve, plug with lettering "WATER," and bottom section with base that fits over valve and with a barrel.
 - Operating Wrenches: Steel, tee-handle with one pointed end, stem of length to operate deepest buried valve, and socket matching valve operating nut. (Provide two wrenches for Project.)

- 5. Indicator Posts: UL 789, FMG approved, vertical-type, cast iron body with operating wrench, extension rod, and adjustable cast iron barrel of length required for depth of burial of valve.
- I. Swing Check Valves:
 - Valves smaller than 2 inches (25 mm): ASTM B61, resilient seat, bronze body and bonnet, pressure rating of 200 psi (1380 kPa). Ends to match main line piping.
 - 2. Valves 2 inches (25 mm) or larger: AWWA 508, resilient seat valve with iron body and bonnet, pressure rating of 200 psi (1380 kPa).
 - 3. Coating: AWWA C550, fusion epoxy coated.
- J. Detector Check Valves
 - Galvanized cast iron body, bolted cover with air-bleed device for access to internal parts, and flanged ends. Include one-piece bronze disc with bronze bushings, pivot, and replaceable seat. Include threaded bypass taps in inlet and outlet for bypass meter connection. Set valve to allow minimal water flow through bypass meter when major water flow is required.
 - 2. Standards: UL 312 and FMG approved, 175 psi (1207 kPa).
 - 3. Water Meter: AWWA C700, disc type, at least one-fourth size of detector check valve. Include meter, bypass piping, gate valves, check valve, and connections to detector check valve.
 - Iron body, corrosion-resistant clapper ring and seat ring material, flanged ends, with connections for bypass and installation of water meter.
 - 5. Standards: UL 312 and FMG approved, 175 psi (1207 kPa).

K. Butterfly Valves

- 1. Rubber-Seated Butterfly Valve: AWWA C504.
 - a. Provide rubber seated butterfly valve cast or ductile iron body , wafer, or flanged , minimum pressure of 150 psi (1035 kPa).
- 2. UL Butterfly Valve: UL 1091 and FMG approved.
 - a. Provide metal on resilient material seating butterfly valves that are UL 1091 and FMG approved, cast or ductile iron body, wafer or flanged, minimum pressure of 175 psi (1207 kPa).
- L. Plug Valves: ANSI MSS SP-108, resilient-seated eccentric plug valve, minimum pressure of 175 psi (1207 kPa).

M. Corporation Valves and Curb Valves

- 1. Service-Saddle Assemblies: AWWA C800.
 - a. Service Saddle: Copper alloy with seal and threaded outlet for corporation valve.
 - b. Corporation Valve: Bronze body and ground-key plug, with threaded inlet and outlet matching service piping material.
 - c. Manifold: Copper fitting with two to four inlets as required, with ends matching corporation valves and outlet matching service piping material.
 - d. Curb Valves: AWWA C800, bronze body, ground-key plug or ball, wide tee head, with inlet and outlet matching service piping material, minimum pressure of 200 psi (1375 kPa).
 - e. Service Boxes for Curb Valves: AWWA M44, cast iron telescoping top section; plug shall include lettering "WATER"; bottom section with base that fits over curb valve.
 - f. Shutoff Rods: Steel, tee-handle with one pointed end. Stem length shall extend 2 feet (600 mm) above top of valve box for operation of deepest buried valve, with slotted end matching curb valve.
- N. Post-Indicator: NFPA 24 and be fully compatible with the valve and supervisory switches.
- O. Water Meter: SECTION 25 10 10, ADVANCED UTILITY METERING SYSTEM.
 - Furnish and install meter approved by the Water Service Utility. Forward approval of meter to VA Contracting Officer Representative.
- P. Pressure Reducing Valves
- Q. Backflow Preventer Test Kits
 - 1. Provide factory calibrated test kit with gauges, fittings, hoses and carrying case with test-procedure instructions.

2.10 WATER METER BOXES

- A. Base section may be cast iron, PVC, PE, or other pipe.
- B. Cast iron body and double cover for disc-type water meter, with lettering "WATER METER" in top cover; and with separate inner cover; air space

between covers; and slotted, open-bottom base section of length to fit over service piping.

2.11 CONCRETE VAULTS

- A. Precast, reinforced-concrete vault: ASTM C858, designed for AASHTO H20-44 load designation.
 - 1. Ladder: ASTM A36, steel or polyethylene-encased steel steps.
 - 2. Drain: ASME A112.6.3, cast iron floor drain with outlet. Include body anchor flange, light-duty cast iron grate, bottom outlet, and integral or field-installed bronze ball or clapper-type backwater valve.
 - Manhole Frame and Cover: ASTM A48, Class No. 35A minimum tensile strength, 24 inch (610 mm) minimum diameter, unless otherwise indicated.
 - 4. Manhole Frame and Cover: ASTM A536, Grade 60-40-18, ductile iron, 24 inch (610 mm) minimum diameter, unless otherwise indicated.

2.12 PROTECTIVE ENCLOSURES

- A. Freeze-Protection Enclosures: Designed to protect aboveground water piping, equipment, or specialties from freezing and damage, with heat source to maintain minimum internal temperature of 40 deg F (4 deg C) when external temperatures reach as low as minus 34 deg F (minus 36 deg C) meeting the requirements of ASSE 1060.
 - Class I, for equipment or devices other than pressure or atmospheric vacuum breakers.
 - Class I-V, for pressure or atmospheric vacuum breaker equipment or devices. Include drain opening in housing.
 - 3. Include an electric heating cable or heater with self-limiting temperature control.
- B. Weather-Resistant Enclosures: Un-insulated enclosure designed to protect aboveground water piping, equipment, or specialties from weather and damage meeting the requirements of ASSE 1060.
 - 1. Class III, for equipment or devices other than pressure or atmospheric vacuum breakers.
 - 2. Class III-V, for pressure or atmospheric vacuum breaker equipment or devices. Include drain opening in housing.

2.13 FLUSHING HYDRANTS

- A. Post-Type Flushing Hydrants: Non-freeze and drainable, of length required for shutoff valve installation below frost line.
 - 1. Pressure Rating: 150 psi (1035 kPa) minimum

- 2. Outlet: One, with horizontal discharge
- 3. Hose Thread: NPS 2-1/2 (DN 65) Insert NPS (Insert DN) , with NFPA 1963 external hose thread for use by local fire department, and with cast iron cap with brass chain.
- 4. Barrel: Cast iron or steel pipe with breakaway feature
- 5. Valve: Bronze body with bronze-ball or plunger closure , and automatic draining
- 6. Security: Locking device for padlock
- 7. Exterior Finish: Red alkyd-gloss enamel paint.
- 8. Inlet: NPS 2 (DN 50) minimum
- 9. Operating Wrench: One for each unit
- B. Ground-Type Flushing Hydrants: Non-freeze and drainable, of length required for shutoff valve installation below frost line.
 - 1. Pressure Rating: 150 psi (1035 kPa) minimum
 - 2. Outlet: One, with vertical angle discharge
 - 3. Hose Thread: NPS 2-1/2 (DN 65), with NFPA 1963 external hose thread for use by local fire department, and with cast iron cap with brass chain
 - 4. Barrel: Cast iron or steel pipe
 - 5. Valve: Bronze body with bronze-ball or plunger closure, and automatic draining
 - 6. Inlet: NPS 2 (DN 50) minimum
 - 7. Hydrant Box: Cast iron with cover, for ground mounting
 - 8. Operating Wrench: One for each unit
- C. Post-Type Sampling Station: Non-freeze and drainable, of length required for shutoff valve installation below frost line.
 - 1. Pressure Rating: 100 psi (690 kPa) minimum
 - 2. Sampling Outlet: One unthreaded nozzle with handle
 - 3. Valve: Bronze body with bronze-ball or plunger closure . Include operating handle.
 - 4. Drain: Tubing with separate manual vacuum pump
 - 5. Inlet: NPS 3/4 (DN 20) minimum
 - 6. Housing: Weatherproof material with locking device. Include anchor device
 - 7. Operating Wrench: One for each unit

D. FIRE HYDRANTS

 All hydrants shall have removable interiors capable of replacement without digging up the hydrant and be packable under pressure. Threaded joints or spindles shall be bronze and upper and lower barrels shall be of equal diameter. Upper barrel shall be of sufficient length to permit setting hydrant with barrel flange not more than 4 inches (100 mm) above finished grade. All fire hydrants shall have 6 inch (150 mm) bottom connection. Provide Insert number of hydrant wrenches not less than 14 inches (350 mm) long. Pressure Rating: 150 psi (1035 kPa) minimum . Hydrant valve shall open by turning operating nut to left or counterclockwise. Exterior finish shall be red alkyd-gloss enamel paint, unless otherwise indicated. Outlet threads shall meet NFPA 1963, with external hose thread used by local fire department. Include cast iron caps with steel chains and Pentagon, 1-1/2 inch (38 mm) point to flat operating and cap nuts.

- 2. Dry-Barrel Fire Hydrants:
 - a. AWWA C502, freestanding, one NPS 4-1/2 (DN 115) and two NPS 2-1/2 (DN 65) outlets, 5-1/4 inch (133 mm) main valve, drain valve, and NPS 6 (DN 150) mechanical-joint inlet; interior coating according to AWWA C550; cast iron body, compression-type valve opening against pressure and closing.
 - b. UL 246, freestanding, one NPS 4-1/2 (DN 115) and two NPS 2-1/2 (DN 65) outlets, 5-1/4 inch (133 mm) main valve, drain valve, and NPS 6 (DN 150) mechanical-joint inlet; cast iron body, compression-type valve opening against pressure and closing.
- 3. Wet-Barrel Fire Hydrants:
 - a. AWWA C503, freestanding, with one NPS 4-1/2 (DN 115) and two NPS 2-1/2 (DN 65) outlets, NPS 6 (DN 150) threaded or flanged inlet, and base section with NPS 6 (DN 150) mechanical-joint inlet; interior coating according to AWWA C550.
 - b. UL 246, freestanding, one NPS 4-1/2 (DN 115) and two NPS 2-1/2 (DN 65) outlets, NPS 6 (DN 150) threaded or flanged inlet, and base section with NPS 6 (DN 150) mechanical-joint inlet.

2.14 FIRE DEPARTMENT CONNECTIONS

- A. Fire system base water supply must provide a minimum of 1000 gpm (3785 1/m) at 150 psi (1035 kPa) and 700 gpm (2650 1/m) at 200 psi (1380 kPa) at the Fire Department connection. For hydraulic calculations, the calculated demand shall not fall less than 10 percent below the water supply curve.
- B. Fire Department connections: UL 405, NFPA 1963, freestanding, cast bronze body, thread inlets, and matching local fire department hose threads, threaded bottom outlet, lugged caps, gaskets, and chains; lugged swivel connection and drop clapper for each hose-connection inlet; 18 inch (460 mm) high brass sleeve; round escutcheon plate, meeting the requirements of UL 405.
 - Connections: Two NPS 2-1/2 (DN 65) inlets and one NPS 4 (DN 100) NPS 6 (DN 150) outlet
 - 2. Connections: Three NPS 2-1/2 (DN 65) inlets and one NPS 6 (DN 150) outlet
 - 3. Connections: Six NPS 2-1/2 (DN 65) inlets and one NPS 6 (DN 150) outlet
 - 4. Inlet Alignment, horizontal
 - 5. Finish Including Sleeve: Polished chrome-plated OR rough chrome-plated OR Polished bronze
 - 6. Escutcheon Plate Marking: "STANDPIPE"

2.15 ALARM DEVICES

- A. Alarm Devices-General: UL 753 and FMG approved, of types and sizes to mate and match piping and equipment.
- B. Water-Flow Indicators: Vane-type water-flow detector, rated for 250-psi (1725-kPa) working pressure; designed for horizontal or vertical installation; 2 single-pole, double-throw circuit switches to provide isolated alarm and auxiliary contacts, 7 A, 125-V ac and 0.25 A, 24-V dc; complete with factory-set, field-adjustable retard element to prevent false signals and tamperproof cover that sends signal when cover is removed.
- C. Supervisory Switches: Single pole, double throw; designed to signal valve in other than fully open position.
- D. Pressure Switches: Single pole, double throw; designed to signal increase in pressure.

2.16 DISINFECTION CHLORINE

A. Liquid chlorine: AWWA B301.

- B. Sodium Hypochlorite: AWWA B300 with 5 percent to 15 percent available chlorine.
- C. Calcium hypochlorite: AWWA B300 supplied in granular form of 5 g. tablets and shall contain 65 percent chlorine by weight.

2.17 WARNING TAPE

A. Warning tape shall be standard, 4 mil. Polyethylene, 3 inch (76 mm) wide tape, detectable type, blue with black letters and imprinted with "CAUTION BURIED WATER LINE BELOW".

PART 3 - EXECUTION

3.1 PIPING APPLICATIONS

- A. Use pipe, fittings, and joining methods for piping systems according to the following applications.
 - Transition couplings and special fittings with pressure ratings at least equal to piping pressure rating may be used, unless otherwise indicated.
 - 2. Do not use flanges or unions for underground piping.
 - Flanges, unions, grooved-end-pipe couplings, and special fittings may be used, instead of joints indicated, on aboveground piping and piping in vaults.
 - 4. PVC, Schedule 80 pipe, socket fittings; and solvent-cemented joints.
- B. Underground water-service piping
 - Soft copper tube with wrought-copper, solder-joint fittings; and brazed joints.
 - 2. PVC, Schedule 80 socket fittings; and solvent-cemented joints.
 - 3. Hard copper tube with wrought-copper, solder-joint fittings; and brazed copper, pressure-seal fittings; and pressure-sealed joints.
 - 4. PVC, Schedule 80 pipe; socket fittings; and solvent-cemented threaded fittings; and threaded joints.
 - 5. Hard copper tube, with wrought-copper, solder-joint fittings; and brazed joints.
 - 6. PVC, Schedule 80 with socket fittings; and solvent-cemented threaded fittings; and threaded joints.
- C. Underground Fire-Service-Main Piping
 - 1. PE, Class 150 fire-service pipe; molded PE fittings; and heat-fusion joints.
 - PVC, AWWA Class 150 pipe listed for fire-protection service; PVC Class 150 fabricated or molded fittings; and gasketed joints.

- D. Aboveground and Vault Fire-Service-Main Piping NPS 4 to NPS 12 (DN 100 to DN 300)
- E. Underground Combined Water-Service and Fire-Service-Main Piping
 - 1. PVC, AWWA Class 150 pipe listed for fire-protection service; PVC fabricated or molded fittings of same Class as pipe; and gasketed joints.

3.2 VALVE APPLICATIONS

- A. Use mechanical-joint-end valves for NPS 3 (DN 80) and larger underground installation. Use threaded- or flanged-end valves for installation in vaults. Use UL/FMG, non-rising-stem gate valves for installation with indicator posts. Use corporation valves and curb valves with ends compatible with piping, for NPS 2 (DN 50) and smaller installation.
- B. Drawings indicate valve types to be used. Where specific valve types are not indicated, the following requirements apply:

3.3 PVC PIPE

- A. PVC piping shall be installed in strict accordance with the manufacturer's instructions and AWWA C605. Place selected material and thoroughly compacted to one foot above the top of the pipe.
- B. Install Copper Tracer Wire, No. 14 AWG solid, single conductor, insulated. Install in the trench with piping to allow location of the pipe with electronic detectors. The wire shall not be spiraled around the pipe nor taped to the pipe. Wire connections are to be made by stripping the insulation from the wire and soldering with rosin core solder per ASTM 828. Solder joints shall be wrapped with rubber tape and electrical tape. At least every 1000 feet (300 m) provide a 5 pound (2.3 kg) magnesium anode attached to the main tracer wire by solder. The solder joint shall be wrapped with rubber tape and with electrical tape. An anode shall also be attached at the end of each line.
- C. Magnetic markers may be used in lieu of copper tracer wire to aid in future pipe location. Generally, install markers on 20 foot (6 m) centers. If pipe is in a congested piping area, install on 10 foot (3 m) centers. Prepare as-built drawing indicating exact location of magnetic markers.

3.4 COPPER PIPE

- A. Copper piping shall be installed in accordance with the Copper Development Association's Copper Tube Handbook and manufacturer's recommendations.
- B. Copper piping shall be bedded in 6 inches (150 mm) of sand.

3.5 ANCHORAGE INSTALLATION

- A. Install water-distribution piping with restrained joints. Anchorages and restrained-joint types that may be used include concrete thrust blocks, bolted flanged joints, heat-fused joints,
- B. Install anchorages for tees, plugs and caps, bends, crosses, valves, and hydrant branches. Include anchorages for the following piping systems:
 - 1. Gasketed-Joint, Water-Service Piping: According to AWWA C600.
 - 2. Gasketed-Joint, PVC Water-Service Piping: According to AWWA M23.
 - 3. Fire-Service-Main Piping: According to NFPA 24.
- C. Apply full coat of asphalt or other acceptable corrosion-resistant material to surfaces of installed ferrous anchorage devices.

3.6 VALVE INSTALLATION

- A. AWWA Valves: Install each underground valve with stem pointing up and with valve box.
- B. UL/FMG, Valves: Install each underground valve and valves in vaults with stem pointing up and with vertical cast iron indicator post.
- C. MSS Valves: Install as component of connected piping system.
- D. Corporation Valves and Curb Valves: Install each underground curb valve with head pointed up and with service box.
- E. Pressure-Reducing Valves: Install in vault or aboveground between shutoff valves. Install full-size valved bypass.
- F. Relief Valves: Install aboveground with shutoff valve on inlet.
- G. Raise or lower existing valve and curb stop boxes and fire hydrants to finish grade in areas being graded.

3.7 DETECTOR-CHECK VALVE INSTALLATION

- A. Install in vault or aboveground and for proper direction of flow. Install bypass with water meter, gate valves on each side of meter, and check valve downstream from meter.
- B. Support detector check valves, meters, shutoff valves, and piping on brick or concrete piers.

3.8 WATER METER INSTALLATION

- A. Install water meters, piping, and specialties according to utility company's written instructions.
- B. Install detector-type water meters in meter vault according to AWWA M6. Include shutoff valves on water meter inlets and outlets and full-size valved bypass around meters. Support meters, valves, and piping on brick or concrete piers.

3.9 ROUGHING-IN FOR WATER METERS

A. Rough-in piping and specialties for water meter installation according to utility company's written instructions.

3.10 WATER METER BOX INSTALLATION

- A. Install water meter boxes in paved areas flush with surface.
- B. Install water meter boxes in grass or earth areas with top 2 inches (50 mm).

3.11 VACUUM BREAKER ASSEMBLY INSTALLATION

- A. Install pressure vacuum breaker assemblies of type, size, and capacity indicated. Include valves and test cocks. Install according to requirements of plumbing and health department and authorities having jurisdiction.
- B. Do not install pressure vacuum breaker assemblies in vault or other space subject to flooding.

3.12 BACKFLOW PREVENTER INSTALLATION

- A. Install backflow Preventers of type, size, and capacity indicated. Include valves and test cocks. Install according to requirements of plumbing and health department and authorities having jurisdiction.
- B. Do not install backflow Preventers that have relief drain in vault or in other spaces subject to flooding.
- C. Do not install bypass piping around backflow Preventers.
- D. Support NPS 2-1/2 (DN 65) and larger backflow Preventers, valves, and piping near floor and on brick or concrete piers.

3.13 CONCRETE VAULT INSTALLATION

A. Install precast concrete vaults according to ASTM C891.

3.14 PROTECTIVE ENCLOSURE INSTALLATION

- A. Install concrete base level and with top approximately 2 inches (50 mm) above grade.
- B. Install protective enclosure over valves and equipment and anchor protective enclosure to concrete base.

3.15 FLUSHING HYDRANT INSTALLATION

- A. Install post-type flushing hydrants with valve below frost line and provide for drainage. Support in upright position. Include separate gate valve or curb valve and restrained joints in supply piping.
- B. Install ground-type flushing hydrants with valve below frost line and provide for drainage. Install hydrant box flush with grade. Include separate gate valve or curb valve and restrained joints in supply piping.

C. Install sampling stations with valve below frost line and provide for drainage. Attach weather-resistant housing and support in upright position. Include separate curb valve in supply piping.

3.16 FIRE DEPARTMENT CONNECTION INSTALLATION

- A. Install ball drip valves at each check valve for fire department connection to mains.
- B. Install protective pipe bollards on two sides of on three sides of each fire department connection.

3.17 FIRE HYDRANT INSTALLATION

- A. Install each fire hydrant with separate gate valve in supply pipe, anchor with restrained joints or thrust blocks, and support in upright position.
- B. Install Wet-Barrel Fire Hydrants with valve below frost line. Provide for drainage.

3.18 CONNECTIONS

A. Drawings indicate general arrangement of piping, fittings, and specialties. Install water service lines to a point of connection within approximately 5 feet (1500 mm) outside of building(s) to which service is to be connected and make connections thereto. If building services have not been installed provide temporary caps and mark for future connection.

3.19 FIELD QUALITY CONTROL

- A. Conduct piping tests before joints are covered and after concrete thrust blocks have hardened sufficiently. Fill pipeline 24 hours before testing and apply test pressure to stabilize system. Use only potable water.
- B. Prior to final acceptance, provide a video record of all piping from the building to the municipal connection to show the lines are free from obstructions, properly sloped and joined.
- C. Perform hydrostatic tests at not less than one-and-one-half times working pressure for two hours.
- D. Increase pressure in 50-psi (350-kPa) increments and inspect each joint between increments. Hold at test pressure for 1 hour; decrease to 0 psi (0 kPa). Slowly increase again to test pressure and hold for 1 more hour. Maximum allowable leakage is 2 quarts (1.89 L) per hour per 100 joints. Remake leaking joints with new materials and repeat test until leakage is within allowed limits.
- E. Prepare reports of testing activities.

Tuscaloosa VAMC Correct Failing Sanitary Sewer, Water Main, FP Deficiencies 100% Construction Documents Tuscaloosa, AL 35404

3.20 IDENTIFICATION

A. Install continuous underground warning tape 12 inches (300 mm) directly over piping.

3.21 CLEANING

- A. Purge new water-distribution piping systems and parts of existing systems that have been altered, extended, or repaired before use.
- B. Use purging and disinfecting procedure prescribed by local utility provider or other authorities having jurisdiction or, if method is not prescribed by authorities having jurisdiction, use procedure described in AWWA C651 or do as follows:
 - 1. Fill the water system with a water/chlorine solution containing at least 50 ppm of chlorine; isolate and allow to stand for 24 hours.
 - 2. Drain the system of the previous solution and refill with water/chlorine solution containing at least 200 ppm of chlorine; isolate and allow system to stand for 3 hours.
 - 3. After standing time, flush system with clean, potable water until no chlorine remains in water coming from system.
 - 4. Submit water samples in sterile bottles to authorities having jurisdiction. Repeat procedure if biological examination shows evidence of contamination.
- C. Prepare reports of purging and disinfecting activities.

--- E N D ---

SECTION 33 30 00

SANITARY SEWER UTILITIES

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies materials and procedures for construction of outside, underground sanitary sewer systems that are complete and ready for operation. This includes piping, structures, and all other incidentals.

1.2 RELATED WORK

- A. Excavation, Trench Widths, Pipe Bedding, Backfill, Shoring, Sheeting, Bracing: Section 31 20 00, EARTH MOVING.
- B. Submittals: Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES.
- C. Erosion and Sediment Control: Section 01 57 19, TEMPORARY ENVIRONMENTAL CONTROLS.

1.3 DEFINITIONS

1.4 ABBREVIATIONS

- A. PVC: Polyvinyl chloride plastic
- B. DI: Ductile iron pipe

1.5 DELIVERY, STORAGE AND HANDLING

A. Store plastic piping protected from direct sunlight and support to prevent sagging and bending. Protect stored piping from moisture and dirt by elevating above grade. Protect flanges, fittings, and specialties from moisture and dirt.

B. Handle manholes according to manufacturer's written rigging instructions.

1.6 COORDINATION

- A. Coordinate connection to sanitary sewer main with Public Utility company. (Approval from public utility has been obtained indicating that the downstream sanitary systems have sufficient capacity to handle the sanitary discharge from the facility.)
- B. Contractor to obtain approval from the Public Agency that the existing sanitary sewer systems have the capacity to handle the discharge from the facility.
- C. Coordinate exterior utility lines and connections to building lines up to 5 feet of building wall.
- D. Coordinate connection to public sewer system with Public Utility Company.

1.7 QUALITY ASSURANCE:

- A. Products Criteria:
 - When two or more units of the same type or class of materials or equipment are required, these units shall be products of one manufacturer.
 - 2. A nameplate bearing the manufacturer's name or trademark, including model number, shall be securely affixed in a conspicuous place on equipment. In addition, the model number shall be either cast integrally with equipment, stamped, or otherwise permanently marked on each item of equipment.
- B. Comply with the rules and regulations of the Public Utility having jurisdiction over the connection to Public Sanitary Sewer lines and the extension, and/or modifications to Public Utility Systems.

1.8 SUBMITTALS:

- A. Manufacturers' Literature and Data shall be submitted for the following as one package:
 - 1. Pipe, Fittings, and Appurtenances.
 - 2. Jointing Material.
 - 3. Manhole and Structure Material.
 - 4. Frames and Covers.
 - 5. Steps and Ladders.
 - 6. Gate Valves.
 - 7. Valve Boxes.
 - 8. Check Valves.

1.9 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society for Testing and Materials (ASTM):

A74-09.....Cast Iron Soil Pipe and Fittings

A185/A185M-07.....Steel Welded Wire Reinforcement, Plain, for Concrete

- A615/A615M-09b.....Deformed and Plain Carbon-Steel Bars for Concrete Reinforcement
- A746-99.....Ductile-Iron Gravity Sewer Pipe
- C478-09.....Precast Reinforced Concrete Manhole Sections

Tuscaloosa VAMC Correct Failing Sanitary Sewer, W Tuscaloosa, AL 35404	Water Main, FP Deficiencies	December 29, 2023 100% Construction Documents Project No: 679-21-102
C857-11	.Minimum Structural Design	Loading for Underground
	Precast Concrete Utility S	tructures
C890-11	.Minimum Structural Design	Loading for Monolithic
	or Sectional Precast Concr	ete Water and Wastewater
	Structures	
C913-08	.Precast Concrete Water and	Wastewater Structures
C923-08	Resilient Connectors Between Reinforced Concrete	
	Manhole Structures, Pipes,	and Laterals
C924-02(2009)	.Testing Concrete Pipe Sewe	r Lines by Low-Pressure
	Air Test Method	
C990-09	.Joints for Concrete Pipe,	Manholes, and precast
	Box Sections using Preform	ed Flexible Joint
	Sealants	
C1173-10	.Flexible Transition Coupli	ngs for Underground
	Piping Systems	
C1440-08	.Thermoplastic Elastomeric	(TPE) Gasket Materials
	for Drain, Waste and Vent	(DWV), Sewer, Sanitary
	and Storm Plumbing Systems	
C1460-08	.Shielded Transition Coupli	ngs for Use With
	Dissimilar DWV Pipe and Fi	ttings Above Ground
C1461-08	.Mechanical Couplings Using	Thermoplastic
	Elastomeric (TPE) Gaskets	for Joining Drain, Waste
	and Vent (DWV), Sewer, San	itary and Storm Plumbing
	systems for Above and belo	w Ground Use
D2321-11	.Underground Installation o	f Thermoplastic Pipe for
	Sewers and Other Gravity-F	low Applications
D3034-08	.Type PSM Poly(Vinyl Chlori	de) (PVC) Sewer Pipe and
	Fittings	
F477-10	.Elastomeric Seals (Gaskets) for Joining Plastic
	Pipe	
F679-08	.Poly(Vinyl Chloride) (PVC)	Large-Diameter Plastic
	Gravity Sewer Pipe and Fit	tings
F891-10	.Coextruded Poly(vinyl Chlo	ride) (PVC) Plastic Pipe
	with a Cellular Core	
F949-10	.Poly(Vinyl Chloride) (PVC)	Corrugated Sewer Pipe
	with a Smooth Interior and	Fittings

Tuscaloosa VAMC December 29, 2023 Correct Failing Sanitary Sewer, Water Main, FP Deficiencies 100% Construction Documents Tuscaloosa, AL 35404 Project No: 679-21-102 F1417-11.....Standard Test Method for Installation Acceptance of Plastic Gravity Sewer Lines Using Low-Pressure Air F1668-08.....Construction Procedures for Buried Plastic Pipe C. American Water Works Association (AWWA): C105/A21.5-10.....Polyethylene Encasement for Ductile-Iron Pipe Systems C110-08..... Ductile-Iron and Gray-Iron Fittings C111/A21.11-06.....Rubber Gasket Joints for Ductile Iron Pressure Pipe and Fittings C900-07.....Polyvinyl Chloride (PVC) Pressure Pipe and Fabricated Fittings, 4 In. Through 12 In. (100 mm Through 300 mm), for Water Transmission and Distribution D. American Society of Mechanical Engineers:

- A112.14.1-2003.....Backwater Valves
- A112.36.2M-1991.....Cleanouts

1.10 WARRANTY

A. The Contractor shall remedy any defect due to faulty material or workmanship and pay for any damage to other work resulting therefrom within a period of one year from final acceptance. Further, the Contractor will provide all manufacturers' and supplier's written guarantees and warranties covering materials and equipment furnished under this Contract.

PART 2 - PRODUCTS

2.1 FACTORY-ASSEMBLED PRODUCTS

- A. Standardization of components shall be maximized to reduce spare part requirements.
- B. All pipe and fittings used in the construction of force mains shall be rated to meet the system maximum operating pressure with a minimum of 150 psi (1035 kPa).
- C. The Contractor shall guarantee performance of assemblies of components and shall repair or replace elements of the assemblies as required to deliver specified performance of the complete assembly.

2.2 PVC, GRAVITY SEWER PIPE AND FITTINGS

A. PVC Gravity Sewer Piping:

1. Pipe and Fittings shall conform to SDR 35.

2. Gaskets: ASTM F477.

- B. PVC Cellular-Core Sewer Piping:
 - 1. Pipe and Fittings: ASTM F891, Sewer and Drain Series, PS 50 minimum stiffness, PVC cellular-core pipe with plain ends for solvent-cemented joints.
 - 2. Fittings SDR 35
- C. PVC Corrugated Sewer Piping:
 - 1. Pipe: ASTM F949, corrugated pipe with bell and spigot ends.
 - 2. Fittings: ASTM F949.
 - 3. Gaskets: ASTM F477.
- D. PVC Type PSM Sewer Piping:
 - 1. Pipe shall conform to SDR 35.
 - 2. Fittings: ASTM D3034.
 - 3. Gaskets: ASTM F477.

2.3 PVC, PRESSURE PIPE AND FITTINGS

A. PVC:

- 1. Pipe: AWWA C900, Class 150 PVC pipe with bell-and-spigot ends for gasketed joints.
- 2. Fittings: AWWA C900, Class 150.
- 3. Gaskets: ASTM F477.

2.4 GRAVITY FLOW LINES WITH SECONDARY CONTAINMENT (ENCASEMENT)

- A. Piping systems conveying hazardous materials shall be constructed with a watertight primary (carrier) pipe completely enclosed within a watertight secondary (containment) pipe.
- B. Piping and fittings shall be as per AWWA C105
- C. The carrier pipe shall be installed with manufactured spacers to maintain a minimum interstitial space of 0.75 inch (19 mm) between the carrier pipe and the containment pipe.
- D. The encasement piping shall be equipped with adequate monitoring ports and vents to detect the presence of fluids within the containment pipe and for the extraction of fluids from the containment pipe.
- E. Encasement pipe shall be bell and spigot with adhesive bond.

2.5 PVC PRESSURE (FORCE) MAIN:

- A. Joints shall be fully restrained with mechanical joints, capable of restraining 50 percent above all loads acting on the joint, but not less than 150 psi (1035 kPa). Thrust blocks shall not be permitted.
- B. Polyvinyl Chloride (PVC) Pipe and Fittings:

Tuscaloosa VAMC Correct Failing Sanitary Sewer, Water Main, FP Deficiencies 100% Construction Documents Tuscaloosa, AL 35404

- 1. Pipe: ASTM D3034, SDR 35.
- 2. Gaskets: ASTM F477.

2.6 NONPRESSURE-TYPE TRANSITION COUPLINGS

- A. Comply with ASTM C1173, elastomeric, sleeve type, reducing or transition coupling, for joining underground nonpressure piping. Include ends to match the same sizes of main line piping and install corrosion-resistant metal tension bands and tightening mechanism on each end.
- B. Sleeve Materials:
 - 1. For Plastic Pipes: ASTM F477, elastomeric seal.
 - 2. For Dissimilar Pipes: PVC or other material compatible with pipe materials being joined.
- C. Unshielded, Flexible Couplings:
 - 1. Couplings shall be elastomeric sleeve with stainless steel shear ring and corrosion-resistant-metal tension band and tightening mechanism on each end.
- D. Shielded, Flexible Couplings:
 - 1. Couplings shall meet ASTM C1460 with elastomeric or rubber sleeve with full-length, corrosion-resistant outer shield with corrosionresistant-metal tension band and tightening mechanism on each end.
- E. Ring-Type, Flexible Couplings:
 - 1. Couplings shall be elastomeric compression seal with dimensions to fit inside bell of larger mainline pipe and for spigot of smaller main line pipe to fit inside ring.
- F. Nonpressure-Type, Rigid Couplings:
 - 1. Coupling shall be ASTM C1461, sleeve-type, reducing- or transitiontype mechanical coupling, molded from ASTM C1440, TPE material; with corrosion-resistant-metal tension band and tightening mechanism on each end.

2.7 BACKWATER VALVES

A. PVC Backwater Valves:

1. PVC valve shall be a horizontal type, with PVC body, PVC removable cover, and PVC swing check valve.

2.8 CLEANOUTS

- A. PVC Cleanouts:
 - 1. PVC body with PVC threaded plug: Cleanout shall be as per ASTM D3034. PVC sewer pipe fitting and riser to cleanout.

 Cleanout Riser: Sewer pipe fitting on main line sewer and riser shall match main line piping.

2.9 MANHOLES

- A. Standard precast concrete manholes and vaults shall be constructed of precast concrete segmental blocks, precast reinforced concrete rings, precast reinforced sections or cast-in-place concrete.
 - 1. Precast Concrete Manholes: Material shall be as per ASTM C478, precast, reinforced concrete, of depth indicated, with sealed joints.
 - Concrete Base: Concrete for base of manhole shall have a minimum compressive strength of 5000 psi (35 MPa) at 28 days. Thickness to be 8 inches (200 mm), minimum.
 - 3. Riser Section: 4 inch (100 mm) minimum thickness, of lengths to provide the total depth of manhole.
 - 4. Top Section: Eccentric-cone type unless otherwise indicated. Top section to match adjustment ring configurations.
 - 5. Joint Sealant: ASTM C990.
 - 6. Resilient Pipe Connectors: ASTM C923.
 - 7. Steps: If over 60 inches (1500 mm) in depth, individual FRP steps or ladder ASTM A615 deformed, 1/2 inch (13 mm) steel reinforcing rods encased in precast concrete sections 12 to 16 inches (300 to 400 mm) center-to-center from top to bottom.
 - 8. Adjusting Rings: Reinforced-concrete rings; 6 to 9 inch (150 to 225 mm) total thickness, with diameter matching manhole frame and cover, and with height as required to adjust manhole frame and cover to indicated elevation and slope.
- B. Designed Concrete Manholes:
 - Description: ASTM C913; designed according to ASTM C890 for AASHTO HS20-44, heavy-traffic, structural loading; of depth, shape, and dimensions indicated, with provision for sealant joints.
 - 2. Ballast: Increase thickness of one or more precast concrete sections or add concrete to manhole as required to prevent flotation.
 - 3. Joint Sealant: ASTM C990, bitumen or butyl rubber.
 - 4. Resilient Pipe Connectors: ASTM C923, cast or fitted into manhole walls, for each pipe connection.
 - 5. Steps: If over 60 inches (1500 mm) in depth, individual FRP steps or FRP ladder individual FRP steps, FRP ladder, or ASTM A615, deformed, 1/2

inch (13 mm) steel reinforcing rods encased in Insert material; width 12 to 16 inches (300 to 400 mm) center-to-center from top to bottom.

- 6. Adjusting Rings: Reinforced-concrete rings; 6 to 9 inch (150 to 225 mm) total thickness, with diameter matching manhole frame and cover, and with height as required to adjust manhole frame and cover to indicated elevation and slope.
- C. Manhole Base Channels: Manhole channels shall be main line pipe material. Lay main pipe through manhole and cut top of pipe out to be three-fourths of pipe diameter. Slope through manhole to match run slopes of the main pipe.

2.10 CONCRETE

- A. Cast-in-place concrete shall be 4000 psi (27.6 MPa) minimum, with 0.45 maximum water/cementitious materials ratio.
- B. Reinforcement
 - 1. Reinforcing fabric shall be ASTM A185, steel, welded wire fabric, plain.
 - 2. Reinforcing bars shall be ASTM A615, Grade 60 (420 MPa) deformed steel.
- C. Benches shall be concrete, sloped to drain into the channel. Provide 6 inches (150 mm) from the cut section of top of pipe to edge of manhole.
- D. Ballast and Pipe Supports shall be Portland cement design mix, 3000 psi (20.7 MPa) minimum, with 0.58 maximum water/cementitious materials ratio.

2.11 WET WELL

- A. Fiberglass wet well. The tank shall be a single wall fiberglass reinforced plastic (FRP) UL labeled underground storage tanks as shown on the drawings. Size and fittings shall be as shown in the drawings.
- B. Concrete Wet Well:
 - Concrete wet well shall be a circular precast vault conforming to ASTM C857.
 - 2. Vault Material: The vault shall have a poured concrete base with precast walls, and top poured in place structure.
 - 3. Concrete: Concrete shall be 5000 psi (35 MPa) concrete at 28 days.
 - 4. Design Load: The vault shall be rated for AASHTO HS20-44 loading and 30 percent impact loads.
 - 5. Joints: Joints in the vault shall be tongue and groove. Flexible sealing compound, as recommended by the manufacturer, shall be placed in all joints to form a watertight structure.

- 6. Interior Coating: Concrete coating for the interior of wet wells shall consist of an epoxy blended filler sealer, and a cross linked epoxy phenolic cured, resistant protective coating.
- C. Tank Design Criteria:
 - Internal Load: Tank shall withstand without leakage a 5 psi (34.5 kpa) air pressure test with 5 to 1 safety factor. Contractor shall test prior to installation as this is to test for leakage.
 - 2. Vacuum Test: The tank shall be tested to 11.5 inches (292 mm) of mercury vacuum by the tank manufacturer to assure structural integrity. Contractor shall submit vacuum test certificate if test conducted by manufacturer at plant.
 - 3. Surface Loading: Tank shall withstand surface AASHTO HS20-44 axle loads.
 - External Hydrostatic Pressure: Tank shall withstand 7 feet (2.1 m) of overburden with the hole fully flooded with a 3 to 1 safety factor against leaking.
 - 5. Threaded fittings shall be of a material consistent with the requirements of the UL label and be of the sizes and locations shown on the drawings.
 - 6. Tanks shall have nominal capacity as shown on drawings with a minimum of a 36 inch square (900 mm) ID manway riser, a complete cast iron frame and lid at finish grade, steps, and lid that is spring loaded.

2.12 ACID NEUTRALIZATION TANKS

A. Acid neutralization tanks shall be constructed of 1/4 inch (6 mm) plate, mild carbon steel suitable for rubber type lining with all welds double butt, continuous full welded, non-porous and ground smooth and having no crevices, offsets, or sharpened edges. The bottom and side walls shall be lined with 1/4 inch (6 mm) thermoplastic sheet lining fused directly to white ceramic lining 2 inches (50 mm) thick laid in Permamite acid and alkali proof mortar. The tank shall include 42 inch (1050 mm) ID manway riser constructed of steel shell with an interior corrosion resistant coating and complete cast iron frame and lid at the finish grade. Neutralizing charge shall be limestone, 3 inches (75 mm) in size.

2.13 OIL AND GREASE INTERCEPTOR AND GREASE REMOVAL PIT

A. The pit shall be constructed of reinforced precast concrete or cast-inplace concrete of the shape and configuration indicated on the plans. Precast vaults shall be constructed in accordance with ASTM C857 and be rated for AASHTO HS20-44 loading. The concrete shall have a minimum

compressive strength of 5000 psi (35 MPa) at 28 days, and reinforcement shall comply with ASTM A615, Grade 60. Access to the pit shall be through 24 inches (600 mm) diameter manhole frame and cover or through hinged aluminum access manways.

B. Baffles shall be constructed of 1/4 inch (6 mm) mild carbon steel with 1/4 inch (6 mm) thermoplastic coating.

2.14 AIR RELEASE VALVE FOR FORCE MAINS

A. Valves shall be a combination air release and vacuum valve with a single body. The valves shall be rated for 150 psi (1025 kPa) working pressure and conform to AWWA C512. Valve shall be provided with threaded connections and be mounted on a full opening ball valve to isolate the air release valve from the system.

2.15 WARNING TAPE

A. Warning tape shall be standard, 4 mil (0.1 mm) polyethylene 3 inch (76 mm) wide tape detectable type, green with black letters and imprinted with "CAUTION BURIED SEWER LINE BELOW".

PART 3 - EXECUTION

3.1 PIPING INSTALLATION

- A. Drawing plans and details indicate the general location and arrangement of underground sanitary sewer piping. Install piping as shown on the drawings, to the extent practical. Where specific installation is not indicated, follow the piping manufacturer's written instructions.
- B. Install piping beginning at the low point, true to grades and alignment indicated on the drawings, with unbroken continuity of invert. Place bell ends of piping facing upstream. Install gaskets, seals, sleeves, and couplings according to manufacturer's written instructions for using lubricants, cements, and other installation requirements.
- C. Do not lay pipe on unstable material, in wet trench or when trench and weather conditions are unsuitable for the work.
- D. Support pipe on compacted bedding material. Excavate bell holes only large enough to properly make the joint.
- E. Inspect pipes and fittings for defects before installation. Defective materials shall be plainly marked and removed from the site. Cut pipe shall have smooth regular ends at right angles to axis of pipe.

- F. Lower pipe into trench carefully and bring to proper line, grade, and joint. After jointing, the interior of each pipe shall be thoroughly wiped or swabbed to remove any dirt, trash, or excess jointing materials.
- G. Do not walk on pipe in trenches until covered by layers of bedding or backfill material to a depth of 12 inches (300 mm) over the crown of the pipe.
- H. Warning tape shall be continuously placed 12 inches (300 mm) above sewer pipe.
- I. Install manholes for changes in direction unless fittings are indicated. Use fittings for branch connections unless direct tap into existing sewer is indicated.
- J. Install proper size increasers, reducers, and couplings where different sizes or materials of pipes and fittings are connected. Reducing the size of piping in the direction of flow is prohibited.
- K. When installing pipe under streets or other obstructions that cannot be disturbed, use pipe-jacking process or microtunneling.
- L. Install gravity-flow, non-pressure, drainage piping according to the following:
 - Install piping pitched down in direction of flow, at minimum slope of 1 percent unless otherwise indicated.
 - 2. Install piping with minimum cover as shown on Drawings.
 - 3. Install PVC cellular-core, PVC corrugated sewer, PSM sewer and PVC gravity sewer according to ASTM D2321 and ASTM F1668.
- M. Install force-main, pressure piping according to the following:
 - Install piping with restrained joints at tee fittings and at horizontal and vertical changes in direction. Use corrosion-resistant rods, pipe or fittings, or cast-in-place-concrete supports or anchors. Pressure (force) mains shall have the bells facing the direction of flow.
 - 2. Sections of piping listed on the drawings shall be fully restrained. For devices with twist off nuts, the twist off nuts shall be placed on top of the fitting for the Resident Engineer's inspection. The Contractor shall torque test all bolts, set screws, identified by the Resident Engineer.
 - 3. Thrust blocks shall not be permitted.
- N. Clear interior of piping and manholes of dirt and superfluous material as work progresses. Maintain swab or drag in piping and pull past each joint

as it is completed. Place plug in end of incomplete piping at end of day and when work stops.

- O. Gravity Flow Lines with Secondary Containment (Encasement Pipe):
 - Install per manufacturer's recommendations. Install all pipe centering devices to maintain an interstitial space below the invert of the carrier pipe. Both the carrier and containment pipe shall be tested for leaks.

3.2 PIPE JOINT CONSTRUCTION

- A. Join gravity-flow, non-pressure, drainage piping according to the following:
 - 1. Join ductile iron, gravity sewer piping according to AWWA C600 for pushon joints.
 - 2. Join PVC piping according to ASTM D2321.
 - 3. Join dissimilar pipe materials with nonpressure-type, flexible or rigid couplings.
- B. Join force-main, pressure piping according to the following:
 - 1. Join ductile iron pressure piping according to AWWA C600 for push-on joints.
 - 2. Join PVC pressure piping according to manufacturer's recommendations.
 - 3. Join dissimilar pipe materials with pressure-type couplings.
- C. Pipe couplings, expansion joints, and deflection fittings with pressure ratings at least equal to piping rating may be used in applications below unless otherwise indicated.
 - 1. Use non-pressure flexible couplings where required to join gravity-flow, non-pressure sewer piping unless otherwise indicated.
 - 2. Use pressure pipe couplings for force-main joints.

3.3 SEWER AND MANHOLE SUPPORTS, CONCRETE CRADLES WITHIN VAULTS

A. Install reinforced concrete as detailed on the drawings. The concrete shall not restrict access for future maintenance of the joints within the piping system.

3.4 BUILDING SERVICE LINES

A. Install sanitary sewer service lines to point of connection within approximately 5 feet (1500 mm) outside of building(s) where service is required and make connections. Coordinate the invert and location of the service line with the Contractor installing the building lines.

3.5 MANHOLE INSTALLATION

A. Install manholes complete with appurtenances and accessories indicated.

- Precast concrete segmental blocks shall lay true and plumb. All horizontal and vertical joints shall be completely filled with mortar. Parge interior and exterior of structure with 1/2 inch (15 mm) or cement mortar applied with a trowel and finished to an even glazed surface.
- 2. Precast reinforced concrete rings shall be installed true and plumb. The joints between rings and between rings and the base and top, shall be sealed as per manufacturer's recommendations. Adjust the length of the rings so that the top section will be at the required elevation. Cutting the top section is not acceptable.
- 3. Concrete manhole risers and tops: Install as shown on the drawings.
- B. Designed Concrete Structures:
 - Concrete structures shall be installed in accordance with Section 03 30
 CAST-IN-PLACE CONCRETE.
- C. Do not build structures when air temperature is 32 deg F (0 deg C), or below.
- D. The wall that supports access rungs or ladder shall be 90 deg vertical from the floor of structure to manhole cover.
- E. Install steps and ladders per the manufacturer's recommendations. Steps and ladders shall not move or flex when used. All loose steps and ladders shall be replaced by the Contractor.
- F. Set tops of frames and covers flush with finished surface of manholes that occur in pavements. In unpaved areas, the rim elevation shall be 2 inches (50 mm) above the adjacent finish grade.
- G. Install manhole frames and covers on a mortar bed, such that frames and covers shall not move when subject to vehicular traffic. Install a concrete collar around the frame to protect the frame from moving until the adjacent pavement is placed. Install an 8 inches (200 mm) thick, by 12 inches (300 mm) wide concrete collar around the perimeter of the frame. Slope the top of the collar away from the frame.

3.6 WET WELLS

- A. Install tank on a concrete pad as recommended by the manufacturer.
- B. Installation of the tank and fittings shall be in accordance with the recommendations of the manufacturer.
- C. In areas where the tank is subject to groundwater, the tank shall be anchored against floating as recommended by the manufacturer.

- D. After installation, the inlets and outlets shall be plugged, and the tank completely filled with water. The tank shall have no leakage over a 48 hour period.
- E. Top of wet well should be set a minimum of 6 inches (150 mm) above finish grade, unless in a traffic area, then it must match existing grade.
- F. Install a 12 inches (300 mm) concrete ring around the fiberglass tank if in a grassed area.
- G. All tank walls shall be level and plumb.
- H. Seal all joints and depressions in the wet well.
- I. Pipe and fittings entering and within the wet well shall be poly-lined ductile iron pipe.
- J. All pipe penetrations through the walls of the wet well shall be sealed watertight.

3.7 OIL AND GREASE INTERCEPTOR AND GREASE REMOVAL PIT

- A. Pipe and fittings shall be PVC, piping shall be used inside of trap, between trap and buildings, and between trap and manhole.
- B. Manways and access manholes shall be set to finish grade providing adequate access to the unit. Slope pavement around the access-way to prevent stormwater from entering the unit.
- C. Install baffles as indicated on the drawings.

3.8 ACID NEUTRALIZING TANKS

- A. Set tank on aggregate base per the manufacturer's recommendations.
- B. Inspect interior and exterior of the tank and repair all damage to the lining. Place limestone in tank per manufacturer's recommendations.
- C. Backfill around tank with sand material.

3.9 BACKWATER VALVE INSTALLATION

- A. Install horizontal-type backwater valves in piping manholes or pits.
- B. Install combination horizontal and manual gate valves in piping and in manholes.
- C. Install terminal-type backwater valves on end of piping and in manholes. Secure units to sidewalls.

3.10 CLEANOUT INSTALLATION

A. Install cleanouts and riser extensions from sewer pipes to cleanouts at grade. Cleanouts should be 6 inches (150 mm) in diameter and consist of a ductile iron 45 degree fitting on end of run, or combination Y fitting and 1/8 bend in the run with ductile iron pipe extension, watertight plug or cap and cast frame and cover flush with finished grade. Install piping so cleanouts open in direction of flow in sewer pipe.

- 1. Use Light-Duty, top-loading classification cleanouts in earth or unpaved foot-traffic areas.
- 2. Use Medium-Duty, top-loading classification cleanouts in paved foottraffic areas.
- 3. Use Heavy-Duty, top-loading classification cleanouts in vehicle-traffic service areas.
- 4. Use Extra-Heavy-Duty, top-loading classification cleanouts in roads.
- B. Set cleanout frames and covers in earth in cast-in-place-concrete, 18 by 18 by 12 inches (450 by 450 by 300 mm) 1 inch (25 mm) above surrounding grade.
- C. Where cleanout is in force main, provide a blind flange top connection. The center of the flange shall be equipped with a 2 inches (50 mm) base valve to allow the pressure in the line to be relieved prior to removal of the blind flange. Frames and covers for pressure (force) mains shall be 24 inches (600 mm) in diameter.
- D. Set cleanout frames and covers in concrete pavement and roads with tops flush with pavement surface.
- E. The top of the cleanout assembly shall be 2 inches (50 mm) below the bottom of the cover to prevent loads being transferred from the frame and cover to the piping.

3.11 CONNECTIONS

- A. Make connections to existing piping and underground manholes by coring and installing the pipe at the design invert. Install an elastomeric gasket around the pipe and grout the interstitial space between the pipe and the core.
- B. Connection to an existing manhole: The bench of the manhole shall be cleaned and reshaped to provide a smooth flowline for all new pipes connected to the manhole.
- C. Use commercially manufactured wye fittings for piping branch connections. Encase entire wye fitting plus 6-inch (150-mm) overlap with not less than 6 inches (150 mm) of concrete with 28-day compressive strength of 3000 psi (20.7 MPa).
 - Make branch connections from the side into existing piping, NPS 4 to NPS 20 (DN 100 to DN 500), by removing a section of the existing pipe.
 - 2. Make branch connections from the side into existing piping, NPS 21 (DN 525) or larger, or to underground manholes by cutting an opening into

existing unit large enough to allow 3 inches (76 mm) of concrete to be packed around entering connection. Cut end of connection pipe passing through pipe or structure wall to conform to shape of and be flush with inside wall unless otherwise indicated. On outside of pipe or manhole wall, encase entering connection in concrete to provide additional support of collar from connection to undisturbed ground.

3. Protect existing piping and manholes to prevent concrete or debris from entering while making tap connections. Remove debris or other extraneous material that may accumulate.

3.12 GRADING

- A. Raise or lower existing manholes and structures frames and covers, cleanout frames and covers and valve boxes in regraded areas to finish grade. Carefully remove, clean and salvage cast iron frames and covers. Adjust the elevation of the top of the manhole or structure as detailed on the drawings. Adjust the elevation of the cleanout pipe riser and reinstall the cap or plug. Reset cast iron frame and cover, grouting below and around the frame. Install concrete collar around reset frame and cover as shown on the drawings for new construction.
- B. During periods when work is progressing on adjusting manholes or structures cover elevations, the Contractor shall install a temporary cover above the bench of the structure or manhole. The temporary cover shall be installed above the high flow elevation within the structure and shall prevent debris from entering the wastewater stream.

3.13 CLOSING ABANDONED SANITARY SEWER SYSTEMS

- A. Close open ends of abandoned underground piping indicated to remain in place. Include closures strong enough to withstand hydrostatic and earth pressures that may result after ends of abandoned piping have been closed.
 - 1. Piping under and within 5 feet (1500 mm) of building areas shall be completely removed.
 - 2. Piping outside of building areas shall be completely removed plugged with concrete and abandoned in-place.
- B. Excavate around manholes as required and use either procedure below:
 - Manholes and structures outside of building areas: Remove frame and cover, cut and remove the top of an elevation of 2 feet (600 mm) below finished grade. Fill the remaining portion with compacted gravel or crushed rock or concrete.

- 2. Manholes and structures with building areas: Remove frame and cover and remove the entire structure and the base.
- C. Backfill to grade according to Division 31 Section 31 20 00, EARTH MOVING.
- D. When the limit of the abandonment terminates in an existing manhole to remain, the flow line in the bench of the manhole to the abandoned line shall be filled with concrete and shaped to maintain the flowline of the lines to remain.

3.14 PIPE SEPARATION

- A. Horizontal Separation Water Mains and Sewers:
 - Existing and proposed water mains shall be at least 10 feet (3 m) horizontally from any proposed gravity flow and pressure (force main) sanitary sewer or sewer service connection.
 - 2. Gravity flow mains and pressure (force) mains may be located closer than 10 feet (3 m) but not closer than 6 feet (1.8 m) to a water main when: a. Local conditions prevent a lateral separation of 10 feet (3 m); and
 - b. The water main invert is at least 18 inches (450 mm) above the crown of the gravity sewer or 24 inches (600 mm) above the crown of the pressure (force) main; and the water main is in a separate trench separated by undisturbed earth.
 - 3. When it is impossible to meet (1) or (2) above, both the water main and sanitary sewer main shall be constructed of push-on or mechanical joint ductile iron pipe.
- B. Vertical Separation Water Mains and Sewers at Crossings:
 - Water mains shall be separated from sewer mains so that the invert of the water main is a minimum of 24 inches (600 mm) above the crown of gravity flow sewer or 48 inches (1200 mm) above the crown of pressure (force) mains. The vertical separation shall be maintained within 10 feet (3 m) horizontally of the sewer and water crossing. When these vertical separations are met, no additional protection is required.
 - In no case shall pressure (force) sanitary main cross above, or within 24 inches (600 mm) of water lines.
 - 3. When it is impossible to meet (1) above, the gravity flow sewer may be installed 18 inches (450 mm) above or 12 inches (300 mm) below the water main, provided that both the water main and sewer shall be constructed of push-on or mechanical ductile pipe. Pressure (Force) sewers may be installed 24 inches (600 mm) below the water line provided both the water line and sewer line are constructed of ductile iron pipe.

4. The required vertical separation between the sewer and the water main shall extend on each side of the crossing until the perpendicular distance from the water main to the sewer line is at least 10 feet (3 m).

3.15 IDENTIFICATION

A. Install green warning tape directly over piping and at outside edges of underground manholes.

3.16 FIELD QUALITY CONTROL

- A. All systems shall be inspected and obtain the Resident Engineer's approval. Prior to final acceptance, provide a video record of all piping from the building to the municipal connection to show the lines are free from obstructions, properly sloped and joined.
- B. To inspect, thoroughly flush out the lines and manholes before inspection. Lamp test between structures and show full bore indicating sewer is true to line and grade. Lips at joints on the inside of gravity sewer lines are not acceptable.
 - 1. Submit separate report for each system inspection.
 - 2. Defects requiring correction include the following:
 - a. Alignment: Less than full diameter of inside of pipe is visible between structures.
 - b. Deflection: Flexible piping with deflection that prevents passage of ball or cylinder of size not less than 92.5 percent of piping diameter.
 - c. Damage: Crushed, broken, cracked, or otherwise damaged piping.
 - d. Infiltration: Water leakage into piping.
 - e. Exfiltration: Water leakage from or around piping.
 - 3. Replace defective piping using new materials and repeat inspections until defects are within allowances specified.
 - 4. Re-inspect and repeat procedure until results are satisfactory.
- C. Air Tests: Test sanitary sewerage according to requirements of authorities having jurisdiction and the following:
 - 1. Test plastic gravity sewer piping according to ASTM F1417.
 - 2. Test concrete gravity sewer piping according to ASTM C924.
 - 3. Clean and isolate the section of sewer line to be tested. Plug or cap the ends of all branches, laterals, tees, wyes, and stubs to be included in the test to prevent air leakage. The line shall be pressurized to 4 psi (28 kPa) and allowed to stabilize. After pressure stabilization, the
pressure shall be dropped to 3.5 psi (24 kPa) greater than the average back-pressure of any groundwater above the sewer.

- 4. For force mains, perform testing after supports and anchors are installed. Test at pressure not less than 1-1/2 times the maximum system operating pressure, but not less than 150 psi (1035 kPa).
- 5. Testing of Fiberglass Sewage Holding Tanks shall show no leakage during a 5 psi (35 kPa) air pressure test with 5:1 safety factor.
- 6. Testing of Concrete Wet Well shall show no leakage with the wet well completely filled with water for a duration of 4 hours.

3.17 CLEANING

A. Clean dirt and superfluous material from interior of piping.

--- E N D ---

SECTION 33 40 00

STORM SEWER UTILITIES

PART 1 - GENERAL

1.1 DESCRIPTION

This section specifies materials and procedures for construction of outside, underground storm sewer systems that are complete and ready for operation. This includes piping, structures, and all other incidentals.

1.2 RELATED WORK

- A. Excavation, Trench Widths, Pipe Bedding, Backfill, Shoring, Sheeting, Bracing: Section 31 20 11, EARTHWORK.
- B. Concrete Work, Reinforcing, Placement and Finishing: Section 03 30 00, CAST-IN-PLACE CONCRETE.
- C. General plumbing, protection of Materials and Equipment, and quality assurance: Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.
- D. Materials and Testing Report Submittals: Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES.
- E. Erosion and Sediment Control: Section 01 57 19, TEMPORARY ENVIRONMENTAL CONTROLS.

1.3 DEFINITIONS

1.4 ABBREVIATIONS

- A. HDPE: High-density polyethylene
- B. PE: Polyethylene

1.5 DELIVERY, STORAGE, AND HANDLING

A. Do not store plastic manholes, pipe, and fittings in direct sunlight.

B. Handle manholes, catch basins, and stormwater inlets according to manufacturer's written rigging instructions.

1.6 COORDINATION

- A. Coordinate connection to storm sewer main with the Public Agency providing storm sewer off-site drainage.
- B. Coordinate exterior utility lines and connections to building services up to the actual extent of building wall.

1.7 QUALITY ASSURANCE:

A. Products Criteria:

- When two or more units of the same type or class of materials or equipment are required, these units shall be products of one manufacturer.
- 2. A nameplate bearing manufacturer's name or trademark, including model number, shall be securely affixed in a conspicuous place on equipment. In addition, the model number shall be either cast integrally with equipment, stamped, or otherwise permanently marked on each item of equipment.

1.8 SUBMITTALS

A. Manufacturers' Literature and Data shall be submitted, as one package, for pipes, fittings, and appurtenances, including jointing materials, hydrants, valves and other miscellaneous items.

1.9 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society for Testing and Materials (ASTM):

A185/A185M-07.....Steel Welded Wire Reinforcement, Plain, for Concrete

A242/A242M-04(2009).....High-Strength Low-Alloy Structural Steel

A536-84(2009).....Ductile Iron Castings

- A615/A615M-09b.....Deformed and Plain Carbon-Steel Bars for Concrete Reinforcement
- A760/A760M-10.....Corrugated Steel Pipe, Metallic-Coated for Sewers and Drains
- A798/A798M-07.....Installing Factory-Made Corrugated Steel Pipe for Sewers and Other Applications

A849-10.....Post-Applied Coatings, Paving, and Linings for Corrugated Steel Sewer and Drainage Pipe

- A929/A929M-01(2007)....Steel Sheet, Metallic-Coated by the Hot-Dip Process for Corrugated Steel Pipe
- B745/B745M-97(2005).....Corrugated Aluminum Pipe for Sewers and Drains
- B788/B788M-09.....Installing Factory-Made Corrugated Aluminum Culverts and Storm Sewer Pipe

33 40 00-2

Tuscaloosa VAMC December 29, 2023 Correct Failing Sanitary Sewer, Water Main, FP Deficiencies 100% Construction Documents Tuscaloosa, AL 35404 Project No: 679-21-102 C14-07..... Non-reinforced Concrete Sewer, Storm Drain, and Culvert Pipe C33/C33M-08.....Concrete Aggregates C76-11.....Reinforced Concrete Culvert, Storm Drain, and Sewer Pipe C139-10.....Concrete Masonry Units for Construction of Catch Basins and Manholes C150/C150M-11....Portland Cement C443-10.....Joints for Concrete Pipe and Manholes, Using Rubber Gaskets C478-09.....Precast Reinforced Concrete Manhole Sections C506-10b......Reinforced Concrete Arch Culvert, Storm Drain, and Sewer Pipe C507-10b.....Reinforced Concrete Elliptical Culvert, Storm Drain, and Sewer Pipe C655-09......Reinforced Concrete D-Load Culvert, Storm Drain, and Sewer Pipe Precast Concrete Utility Structures C891-09..... Installation of Underground Precast Concrete Utility Structures C913-08..... Precast Concrete Water and Wastewater Structures C923-08.....Resilient Connectors Between Reinforced Concrete Manhole Structures, Pipes, and Laterals C924-02(2009).....Testing Concrete Pipe Sewer Lines by Low-Pressure Air Test Method C990-09......Joints for Concrete Pipe, Manholes, and Precast Box Sections Using Preformed Flexible Joint Sealants C1103-03(2009).....Joint Acceptance Testing of Installed Precast Concrete Pipe Sewer Lines

Tuscaloosa VAMC December 29, 2023 Correct Failing Sanitary Sewer, Water Main, FP Deficiencies 100% Construction Documents Tuscaloosa, AL 35404 Project No: 679-21-102 C1173-08.....Flexible Transition Couplings for Underground Piping Systems C1433-10.....Precast Reinforced Concrete Monolithic Box Sections for Culverts, Storm Drains, and Sewers C1479-10.....Installation of Precast Concrete Sewer, Storm Drain, and Culvert Pipe Using Standard Installations D448-08.....Sizes of Aggregate for Road and Bridge Construction D698-07e1.....Laboratory Compaction Characteristics of Soil Using Standard Effort (12 400 ft-lbf/ft3 (600 kNm/m3)) D1056-07.....Flexible Cellular Materials-Sponge or Expanded Rubber D1785-06.....Poly(Vinyl Chloride) (PVC) Plastic Pipe, Schedules 40, 80, and 120 D2321-11......Underground Installation of Thermoplastic Pipe for Sewers and Other Gravity-Flow Applications D2751-05.....Acrylonitrile-Butadiene-Styrene (ABS) Sewer Pipe and Fittings D2774-08......Underground Installation of Thermoplastic Pressure Piping D3034-08.....Type PSM Poly(Vinyl Chloride) (PVC) Sewer Pipe and Fittings D3350-10.....Polyethylene Plastics Pipe and Fittings Materials D3753-05e1.....Glass-Fiber-Reinforced Polyester Manholes and Wetwells D4101-11.....Polypropylene Injection and Extrusion Materials D5926-09.....Poly (Vinyl Chloride) (PVC) Gaskets for Drain, Waste, and Vent (DWV), Sewer, Sanitary, and Storm Plumbing Systems

Tuscaloosa VAMC December 29, 2023 Correct Failing Sanitary Sewer, Water Main, FP Deficiencies 100% Construction Documents Tuscaloosa, AL 35404 Project No: 679-21-102 F477-10.....Elastomeric Seals (Gaskets) for Joining Plastic Pipe F679-08.....Poly(Vinyl Chloride) (PVC) Large-Diameter Plastic Gravity Sewer Pipe and Fittings F714-10.....Polyethylene (PE) Plastic Pipe (SDR-PR) Based on Outside Diameter F794-03(2009).....Poly(Vinyl Chloride) (PVC) Profile Gravity Sewer Pipe and Fittings Based on Controlled Inside Diameter F891-10.....Coextruded Poly(Vinyl Chloride) (PVC) Plastic Pipe With a Cellular Core F894-07.....Polyethylene (PE) Large Diameter Profile Wall Sewer and Drain Pipe F949-10.....Poly(Vinyl Chloride) (PVC) Corrugated Sewer Pipe With a Smooth Interior and Fittings F1417-11.....Installation Acceptance of Plastic Gravity Sewer Lines Using Low-Pressure Air F1668-08.....Construction Procedures for Buried Plastic Pipe C. American Association of State Highway and Transportation Officials (AASHTO): M190-04.....Bituminous-Coated Corrugated Metal Culvert Pipe and Pipe Arches M198-10.....Joints for Concrete Pipe, Manholes, and Precast Box Sections Using Preformed Flexible Joint Sealants M252-09.....Corrugated Polyethylene Drainage Pipe M294-10.....Corrugated Polyethylene Pipe, 12 to 60 In. (300 to 1500 mm) Diameter D. American Water Works Association (AWWA): C105/A21.5-10.....Polyethylene Encasement for Ductile iron Pipe Systems C110-08..... Ductile-Iron and Gray-Iron Fittings

C219-11.....Bolted, Sleeve-Type Couplings for Plain-End Pipe C600-10....Installation of Ductile iron Mains and Their Appurtenances

C900-07.....Polyvinyl Chloride (PVC) Pressure Pipe and Fabricated Fittings, 4 In. Through 12 In. (100 mm Through 300 mm), for Water Transmission and Distribution

M23-2nd ed.....PVC Pipe "Design And Installation"

E. American Society of Mechanical Engineers (ASME):

A112.6.3-2001.....Floor and Trench Drains

A112.14.1-2003.....Backwater Valves

A112.36.2M-1991....Cleanouts

F. American Concrete Institute (ACI):

318-05..... and Commentary and Commentary

350/350M-06.....Environmental Engineering Concrete Structures and Commentary

G. National Stone, Sand and Gravel Association (NSSGA): Quarried Stone for Erosion and Sediment Control

1.10 WARRANTY

The Contractor shall remedy any defect due to faulty material or workmanship and pay for any damage to other work resulting therefrom within a period of one year from final acceptance. Further, the Contractor will furnish all manufacturers' and suppliers' written guarantees and warranties covering materials and equipment furnished under this Contract.

PART 2 - PRODUCTS

2.1 FACTORY-ASSEMBLED PRODUCTS

A. Standardization of components shall be maximized to reduce spare part requirements. The Contractor shall guarantee performance of assemblies of components and shall repair or replace elements of the assemblies as required to deliver specified performance of the complete assembly.

2.2 ABS PIPE AND FITTINGS

- A. ABS Sewer Pipe and Fittings: Pipe and fittings shall conform to ASTM D2751, with bell-and-spigot ends for gasketed joints.1. NPS 3 to NPS 6 (DN 80 to DN 150): SDR 35.
- B. Gaskets: ASTM F477, elastomeric seals.

2.3 PE PIPE AND FITTINGS

- A. Corrugated PE drainage pipe and fittings, NPS 3 to NPS 10 (DN 80 to DN 250);
 ASTM F714, SDR 21 with smooth waterway for coupling joints.
 1. Soil-tight Couplings: AASHTO M252, corrugated, matching tube and fittings.
- B. Corrugated PE pipe and fittings, NPS 12 to NPS 60 (DN 300 to DN 1500); AASHTO M294, Type S for pipes 3 to 24 inches (300 to 600 mm) with smooth waterway for coupling joints. Pipe shall be produced from PE certified by the resin producer as meeting the requirements of ASTM D3350, minimum cell class 335434C.
 - 1. Soil-tight Couplings: AASHTO M252, corrugated, matching tube and fittings.
- C. Profile Wall PE Pipe: Pipe shall comply with ASTM F894, Class 160.
 - 1. Profile Wall PE Plastic Pipe Joints: Joints shall be as per ASTM F894, gasket or thermal weld type with integral bell.
- D. PVC Pipe And Fittings
 - 1. Fittings: SDR 35, PVC socket-type fittings.
- E. PVC Corrugated Sewer Piping
 - 1. Pipe: ASTM F949, PVC, corrugated pipe with bell-and-spigot ends for gasketed joints.
- F. PVC Profile Sewer Piping
 - 1. Pipe: ASTM F794, PVC profile, gravity sewer pipe with bell-and-spigot ends.
 - 2. Fittings: ASTM D3034, PVC with bell ends.
 - 3. Gaskets: ASTM F477, elastomeric seals.
- G. PVC Type PSM Sewer Piping
 - 1. Pipe: ASTM D3034, SDR 35, PVC Type PSM sewer pipe with bell-and-spigot ends.
 - 2. Fittings: ASTM D3034, PVC with bell ends.
 - 3. Gaskets: ASTM F477, elastomeric seals.
- H. PVC Gravity Sewer Piping

- 1. Pipe and fittings shall be ASTM F679, PVC gravity sewer pipe with belland-spigot ends.
- 2. Gaskets: ASTM F477, elastomeric seals for gasketed joints.

2.4 CLEANOUTS

- 1. Top-Loading Classification(s): Heavy Duty
- 2. Pipe fitting and riser to cleanout shall be same material as main pipeline.
- B. Plastic Cleanouts shall have PVC body with PVC threaded plug. Pipe fitting and riser to cleanout shall be of same material as main line pipe.

2.5 DRAINS

2.6 MANHOLES AND CATCH BASINS

- A. Standard Precast Concrete Manholes:
 - Description: ASTM C478 (ASTM C478M), precast, reinforced concrete, of depth indicated, with provision for sealant joints.
 - 2. Diameter: 48 inches (1200 mm) minimum unless otherwise indicated.
 - 3. Ballast: Increase thickness of precast concrete sections or add concrete to base section as required to prevent flotation.
 - 4. Base Section: 6 inch (150 mm) minimum thickness for floor slab and 4-inch (102 mm) minimum thickness for walls and base riser section, and separate base slab or base section with integral floor.
 - 5. Riser Sections: 4 inch (102 mm) minimum thickness, and lengths to provide depth indicated.
 - 6. Top Section: Eccentric-cone type unless concentric-cone or flat-slab-top type is indicated, and top of cone of size that matches grade rings.
 - 7. Joint Sealant: ASTM C990 (ASTM C990M), bitumen or butyl rubber.
 - Resilient Pipe Connectors: ASTM C923 (ASTM C923M), cast or fitted into manhole walls, for each pipe connection.
 - 9. Steps: If total depth from floor of manhole to finished grade is greater than 60 inches (1500 mm). Individual FRP steps or FRP ladder Individual FRP steps; FRP ladder; or ASTM A615, deformed, 1/2 inch (13 mm) steel reinforcing rods encased in ASTM D4101, PP ASTM A615, deformed, 1/2 inch (13 mm) steel reinforcing rods encased in ASTM D4101, PP, width of 16 inches (400 mm) minimum, spaced at 12 to 16 inch (300 to 400 mm) intervals.
 - 10. Adjusting Rings: Reinforced-concrete rings, 6 to 9 inch (150 to 225 mm) total thickness, to match diameter of manhole frame and cover, and height

as required to adjust manhole frame and cover to indicated elevation and slope.

B. Designed Precast Concrete Manholes:

- Description: ASTM C913; designed for A-16 (AASHTO HS20-44), heavytraffic, structural loading; of depth, shape, and dimensions indicated, with provision for sealant joints.
- Ballast: Increase thickness of one or more precast concrete sections or add concrete to manhole as required to prevent flotation.
- 3. Joint Sealant: ASTM C990 (ASTM C990M), bitumen or butyl rubber.
- Resilient Pipe Connectors: ASTM C923 (ASTM C923M), cast or fitted into manhole walls, for each pipe connection.
- 5. Steps: If total depth from floor of manhole to finished grade is greater than 60 inches (1500 mm). Individual FRP steps or FRP ladder Individual FRP steps; FRP ladder; or ASTM A615, deformed, 1/2 inch (13 mm) steel reinforcing rods encased in ASTM D4101, PP ASTM A615 deformed, 1/2 inch (13 mm) steel reinforcing rods encased in ASTM D 4101, PP, width of 16 inches (400 mm) minimum, spaced at 12 to 16 inch (300 to 400 mm) intervals.
- 6. Adjusting Rings: Reinforced-concrete rings, 6 to 9 inch (150 to 225 mm) total thickness, to match diameter of manhole frame and cover, and height as required to adjust manhole frame and cover to indicated elevation and slope.
- C. Fiberglass Manholes:
 - 1. Description: ASTM D3753.
 - 2. Diameter: 48 inches (1200 mm) minimum unless otherwise indicated.
 - 3. Ballast: Increase thickness of concrete base as required to prevent flotation.
 - 4. Base Section: Concrete, 8 inch (203 mm) minimum thickness.
 - 5. Resilient Pipe Connectors: ASTM C923 (ASTM C923M), cast or fitted into manhole walls, for each pipe connection.
 - 6. Steps: If total depth from floor of manhole to finished grade is greater than 60 inches (1500 mm). Individual FRP steps or FRP ladder Individual FRP steps; FRP ladder; or ASTM A615, deformed, 1/2 inch (13 mm) steel reinforcing rods encased in ASTM D4101, PP ASTM A615, deformed, 1/2 inch (13 mm) steel reinforcing rods encased in ASTM D4101, PP, width of 16 inches (400 mm) minimum, spaced at 12 to 16 inch (300 to 400 mm) intervals.

- 7. Adjusting Rings: Reinforced-concrete rings, 6 to 9 inch (150 to 225 mm) total thickness, to match diameter of manhole frame and cover, and height as required to adjust manhole frame and cover to indicated elevation and slope.
- D. Manhole Frames and Covers:
 - 1. Description: Ferrous; 24 inch (610 mm) ID by 7 to 9 inch (175 to 225 mm) riser with 4 inch (102 mm) minimum width flange and 26-inch (600 mm) diameter cover. Include indented top design with lettering cast into cover, using wording equivalent to "STORM SEWER."
 - 2. Material: ASTM A536, Grade 60-40-18 ductile ASTM A48/A48M, Class 35 gray iron unless otherwise indicated.

2.7 CONCRETE FOR MANHOLES AND CATCH BASINS

- A. General: Cast-in-place concrete according to ACI 318, ACI 350/350R, and the following:
 - 1. Cement: ASTM C150, Type II.
 - 2. Fine Aggregate: ASTM C33, sand.
 - 3. Coarse Aggregate: ASTM C33, crushed gravel.
 - 4. Water: Potable.
- B. Concrete Design Mix: 4000 psi (27.6 MPa) minimum, compressive strength in 28 days.
 - 1. Reinforcing Fabric: ASTM A185, steel, welded wire fabric, plain.
 - 2. Reinforcing Bars: ASTM A615, Grade 60 (420 MPa) deformed steel.

2.8 STORMWATER DISPOSAL SYSTEMS

- A. Chamber Systems:
 - Storage and leaching chambers: Molded PE with perforated sides and open bottom. Include number of chambers, distribution piping, end plates, and other standard components as required for system total capacity.
 - 2. Filtering material: ASTM D448, Size No. 24, 3/4 to 2-1/2 inch (19 to 63 mm) washed, crushed stone or gravel. Include Geotextile woven or spun filter fabric, in one or more layers, for minimum total unit weight of 4 oz./sq. yd (135 g/sq. m).
- B. Pipe Systems: Perforated manifold, header, and lateral piping complying with AASHTO M252 for NPS 10 (DN 250) and smaller, AASHTO M294 for NPS 12 to NPS 60 (DN 300 to DN 1500). Include fittings, couplings, seals, and filter fabric.

2.9 HEADWALLS

A. Headwalls: Cast in-place concrete with a minimum compressive strength of 3000 psi (20 MPa) at 28 days.

2.10 FLARED END SECTIONS

A. Flared End Sections: Sections shall be of standard design fabricated from zinc-coated steel sheets conforming to requirements of ASTM A929.

2.11 PRECAST REINFORCED CONCRETE BOX CULVERT

A. Precast Reinforced Concrete Box Culvert: Designed for highway loadings with 2 feet (600 mm) of cover or more subjected to dead load only, conforming to ASTM C1433. For less than 2 feet (600 mm) of cover, subjected to highway loading, conform to ASTM C1433.

2.12 RESILIENT CONNECTORS AND DOWNSPOUT BOOTS FOR BUILDING ROOF DRAINS

A. Resilient connectors and downspout boots: Flexible, watertight connectors used for connecting pipe to manholes and inlets and shall conform to ASTM C923.

2.13 WARNING TAPE

A. Standard, 4-Mil polyethylene 3 inch (76 mm) wide tape detectable type, green with black letters, and imprinted with "CAUTION BURIED STORM DRAIN LINE BELOW".

PART 3 - EXECUTION

3.1 PIPE BEDDING

A. The bedding surface of the pipe shall provide a firm foundation of uniform density throughout the entire length of pipe. Concrete pipe requirements are such that when no bedding class is specified, concrete pipe shall be bedded in a soil foundation accurately shaped and rounded to conform with the lowest one-fourth of the outside portion of circular pipe. When necessary, the bedding shall be tamped. Bell holes and depressions for joints shall not be more than the length, depth, and width required for properly making the particular type of joint. Plastic pipe bedding requirements shall meet the requirements of ASTM D2321. Bedding, haunching and initial backfill shall be either Class IB or Class II material. Corrugated metal pipe bedding requirements shall conform to ASTM A798.

3.2 PIPING INSTALLATION

- A. Drawing plans and details indicate general location and arrangement of underground storm drainage piping. Install piping as shown on the drawings, to extent practical. Where specific installation is not indicated, follow piping manufacturer's written instructions.
- B. Install piping with 36 inch (915 mm), 48 inch (1220 mm) minimum cover as shown on the Drawings.

- C. Install piping beginning at low point, true to grades and alignment indicated with unbroken continuity of invert. Place bell ends of piping facing upstream. Install gaskets, seals, sleeves, and couplings according to manufacturer's written instructions for use of lubricants, cements, and other installation requirements.
 - Do not lay pipe on unstable material, in wet trench or when trench and weather conditions are unsuitable for the work.
 - Support pipe on compacted bedding material. Excavate bell holes only large enough to properly make the joint.
 - 3. Inspect pipes and fittings, for defects before installation. Defective materials shall be plainly marked and removed from the site. Cut pipe shall have smooth regular ends at right angles to axis of pipe.
 - 4. Clean interior of all pipe thoroughly before installation. When work is not in progress, open ends of pipe shall be closed securely to prevent entrance of storm water, dirt or other substances.
 - 5. Lower pipe into trench carefully and bring to proper line, grade, and joint. After jointing, interior of each pipe shall be thoroughly wiped or swabbed to remove any dirt, trash or excess jointing materials.
 - 6. Do not walk on pipe in trenches until covered by layers of shading to a depth of 12 inches (300 mm) over the crown of the pipe.
 - 7. Warning tape shall be continuously placed 12 inches (300 mm) above storm sewer piping.
- D. Install manholes for changes in direction unless fittings are indicated. Use fittings for branch connections unless direct tap into existing sewer is indicated.
- E. Install proper size increasers, reducers, and couplings where different sizes or materials of pipes and fittings are connected. Reducing size of piping in direction of flow is prohibited.
- F. When installing pipe under streets or other obstructions that cannot be disturbed, use pipe-jacking process of microtunneling.
- G. Install gravity-flow, nonpressure drainage piping according to the following:1. Install piping pitched down in direction of flow.
 - 2. Install PVC cellular-core piping, PVC sewer piping, and PVC profile gravity sewer piping, according to ASTM D2321 and ASTM F1668.

3.3 REGRADING

A. Raise or lower existing manholes and structures frames and covers in regraded areas to finish grade. Carefully remove, clean and salvage cast iron frames

and covers. Adjust the elevation of the top of the manhole or structure as detailed on the drawings. Reset cast iron frame and cover, grouting below and around the frame. Install concrete collar around reset frame and cover as shown on the drawings for new construction.

B. During periods when work is progressing on adjusting manholes or structures cover elevations, the Contractor shall install a temporary cover above the bench of the structure or manhole. The temporary cover shall be installed above the high flow elevation within the structure and shall prevent debris from entering the wastewater stream.

3.4 CONNECTIONS TO EXISTING VA-OWNED MANHOLES

A. Make pipe connections and alterations to existing manholes so that finished work will conform as nearly as practicable to the applicable requirements specified for new manholes, including concrete and masonry work, cutting, and shaping.

3.5 CONNECTIONS TO EXISTING PUBLIC UTILITY MANHOLES

- A. Cleanout Installation
 - Install cleanouts and riser extensions from sewer pipes to cleanouts at grade. Install piping so cleanouts open in direction of flow in sewer pipe.
- B. Set cleanout frames and covers in concrete pavement and roads with tops flush with pavement surface.

3.6 DRAIN INSTALLATION

- A. Install type of drains in locations indicated.
- B. Embed drains in 4 inch (102 mm) minimum concrete around bottom and sides.
- C. Set drain frames and covers with tops flush with pavement surface.

3.7 MANHOLE INSTALLATION

- A. Install manholes, complete with appurtenances and accessories indicated. Install precast concrete manhole sections with sealants according to ASTM C891.
- B. Set tops of frames and covers flush with finished surface of manholes that occur in pavements. Set tops 3 inches (76 mm) above finished surface elsewhere unless otherwise indicated.
- C. Circular Structures:
 - Precast concrete segmental blocks shall lay true and plumb. All horizontal and vertical joints shall be completely filled with mortar. Parge interior and exterior of structure with 1/2 inch (15 mm) or cement mortar applied with a trowel and finished to an even glazed surface.

- 2. Precast reinforced concrete rings shall be installed true and plumb. The joints between rings and between rings and the base and top shall be sealed with a preform flexible gasket material specifically manufactured for this type of application. Adjust the length of the rings so that the eccentric conical top section will be at the required elevation. Cutting the conical top section is not acceptable.
- 3. Precast reinforced concrete manhole risers and tops. Install as shown on the drawings for precast reinforced concrete rings.
- D. Rectangular Structures:
 - Precast concrete structures shall be placed on a 8 inch (200 mm) reinforced concrete pad, or be provided with a precast concrete base section. Structures provided with a base section shall be set on an 8 inch (200 mm) thick aggregate base course compacted to a minimum of 95 percent of the maximum density as determined by ASTM D698. Set precast section true and plumb. Seal all joints with preform flexible gasket material.
 - Do not build structures when air temperature is 32 deg F (0 deg C), or below.
 - 3. Invert channels shall be smooth and semicircular in shape conforming to inside of adjacent sewer section. Make changes in direction of flow with a smooth curve of as large a radius as size of structure will permit. Make changes in size and grade of channels gradually and evenly. Construct invert channels by one of the listed methods:
 - a. Forming directly in concrete base of structure.
 - b. Building up with brick and mortar.
 - 4. Floor of structure outside the channels shall be smooth and slope toward channels not less than 1 to 12 or more than 1 to 6. Bottom slab and benches shall be concrete.
 - 5. The wall that supports access rungs or ladder shall be 90 deg vertical from the floor of structure to manhole cover.
 - 6. Install steps and ladders per the manufacturer's recommendations. Steps and ladders shall not move or flex when used. All loose steps and ladders shall be replaced by the Contractor.
 - 7. Install manhole frames and covers on a mortar bed, and flush with the finish pavement. Frames and covers shall not move when subject to vehicular traffic. Install a concrete collar around the frame to protect the frame from moving until the adjacent pavement is placed. In unpaved

areas, the rim elevation shall be 2 inches (50 mm) above the adjacent finish grade. Install an 8 inch (203 mm) thick, by 12 inch (300 mm) concrete collar around the perimeter of the frame. Slope the top of the collar away from the frame.

3.8 CATCH BASIN INSTALLATION

A. Construct catch basins to sizes and shapes indicated.

B. Set frames and grates to elevations indicated.

3.9 STORMWATER INLET AND OUTLET INSTALLATION

- A. Construct inlet head walls, aprons, and sides of reinforced concrete.
- B. Construct riprap of broken stone.
- C. Install outlets that spill onto grade, anchored with concrete.
- D. Install outlets that spill onto grade, with flared end sections that match pipe.
- E. Construct energy dissipaters at outlets.
 - 1.

3.10 CHANNEL DRAINAGE SYSTEM INSTALLATION

- A. Install with top surfaces of components, except piping, flush with finished surface.
- B. Assemble channel sections to form slope down toward drain outlets. Use sealants, adhesives, fasteners, and other materials recommended by system manufacturer.
- C. Embed channel sections and drainage specialties in 4 inch (102 mm) minimum concrete around bottom and sides.
- D. Assemble channel sections with flanged or interlocking joints.
- E. Embed channel sections in 4 inch (102 mm) minimum concrete around bottom and sides.

3.11 STORMWATER DISPOSAL SYSTEM INSTALLATION

A. Piping Systems: Excavate trenches of width and depth, and install piping system, filter fabric, and backfill, according to piping manufacturer's written instructions.

3.12 CONNECTIONS

- A. Connect nonpressure, gravity-flow drainage piping in building's storm building drains specified.
- B. Encase entire connection fitting, plus 6 inch (150 mm) overlap, with not less than 6 inches (150 mm) of concrete with 28-day compressive strength of 3000 psi (20.7 MPa).
- C. Make connections to existing piping and underground manholes.

- Use commercially manufactured wye fittings for piping branch connections. Remove section of existing pipe; install wye fitting into existing piping.
- Make branch connections from side into existing piping, NPS 4 to NPS 20 (DN 100 to DN 500). Remove section of existing pipe, install wye fitting into existing piping.
- 3. Make branch connections from side into existing piping, NPS 21 (DN 525) or larger, or to underground manholes and structures by cutting into existing unit and creating an opening large enough to allow 3 inches (76 mm) of concrete to be packed around entering connection. Cut end of connection pipe passing through pipe or structure wall to conform to shape of and be flush with inside wall unless otherwise indicated. On outside of pipe, manhole, or structure wall, use epoxy-bonding compound as interface between new and existing concrete and piping materials.
- Protect existing piping, manholes, and structures to prevent concrete or debris from entering while making tap connections. Remove debris or other extraneous material that may accumulate.
- D. Pipe couplings, expansion joints, and deflection fittings with pressure ratings at least equal to piping rating may be used in applications below unless otherwise indicated.

3.13 CLOSING ABANDONED STORM DRAINAGE SYSTEMS

- A. Abandoned Piping: Close open ends of abandoned underground piping indicated to remain in place. Include closures strong enough to withstand hydrostatic and earth pressures that may result after ends of abandoned piping have been closed. Use either procedure below:
 - Close open ends of piping with threaded metal caps, plastic plugs, or other acceptable methods suitable for size and type of material being closed. Do not use wood plugs.
- B. Abandoned Manholes and Structures: Excavate around manholes and structures as required and use one procedure below:
 - 1. Remove manhole or structure and close open ends of remaining piping.
 - 2. Remove top of manhole or structure down to at least 36 inches (915 mm) below final grade. Fill to within 12 inches (300 mm) of top with stone, rubble, gravel, or compacted dirt. Fill to top with concrete.
- C. Backfill to grade according to Division 31 Section EARTHWORK.

3.14 IDENTIFICATION

A. Install green warning tape directly over piping and at outside edge of underground structures.

3.15 FIELD QUALITY CONTROL

- A. Inspect interior of piping to determine whether line displacement or other damage has occurred. Prior to final acceptance, provide a video record of all piping from the building to the municipal connection to show the lines are free from obstructions, properly sloped and joined.
 - 1. Submit separate reports for each system inspection.
 - 2. Defects requiring correction include the following:
 - a. Alignment: Less than full diameter of inside of pipe is visible between structures.
 - b. Deflection: Flexible piping with deflection that prevents passage of ball or cylinder of size not less than 92.5 percent of piping diameter.
 - c. Damage: Crushed, broken, cracked, or otherwise damaged piping.
 - d. Infiltration: Water leakage into piping.
 - e. Exfiltration: Water leakage from or around piping.
 - 3. Replace defective piping using new materials and repeat inspections until defects are within allowances specified.
 - 4. Reinspect and repeat procedure until results are satisfactory.

3.16 TESTING OF STORM SEWERS:

- A. Submit separate report for each test.
- B. Test new piping systems, and parts of existing systems that have been altered, extended, or repaired, for leaks and defects.
 - 1. Do not enclose, cover, or put into service before inspection and approval.
 - Test completed piping systems according to requirements of authorities having jurisdiction.
 - 3. Schedule tests and inspections by authorities having jurisdiction with at least 24 hours advance notice.
 - 4. Submit separate report for each test.
 - 5. Air test gravity sewers. Concrete Pipes conform to ASTM C924, Plastic Pipes conform to ASTM F1417, all other pipe material conform to ASTM C828 or C924, after consulting with pipe manufacturer. Testing of individual joints shall conform to ASTM C1103.

- a. PVC Piping: Test according to AWWA M23, "Testing and Maintenance" Chapter.
- C. Leaks and loss in test pressure constitute defects that must be repaired. Replace leaking piping using new materials and repeat testing until leakage is within allowances specified.

3.17 CLEANING

A. Clean interior of piping of dirt and superfluous materials. Flush with water.

--- E N D ----