



300 CHASE PARK SOUTH

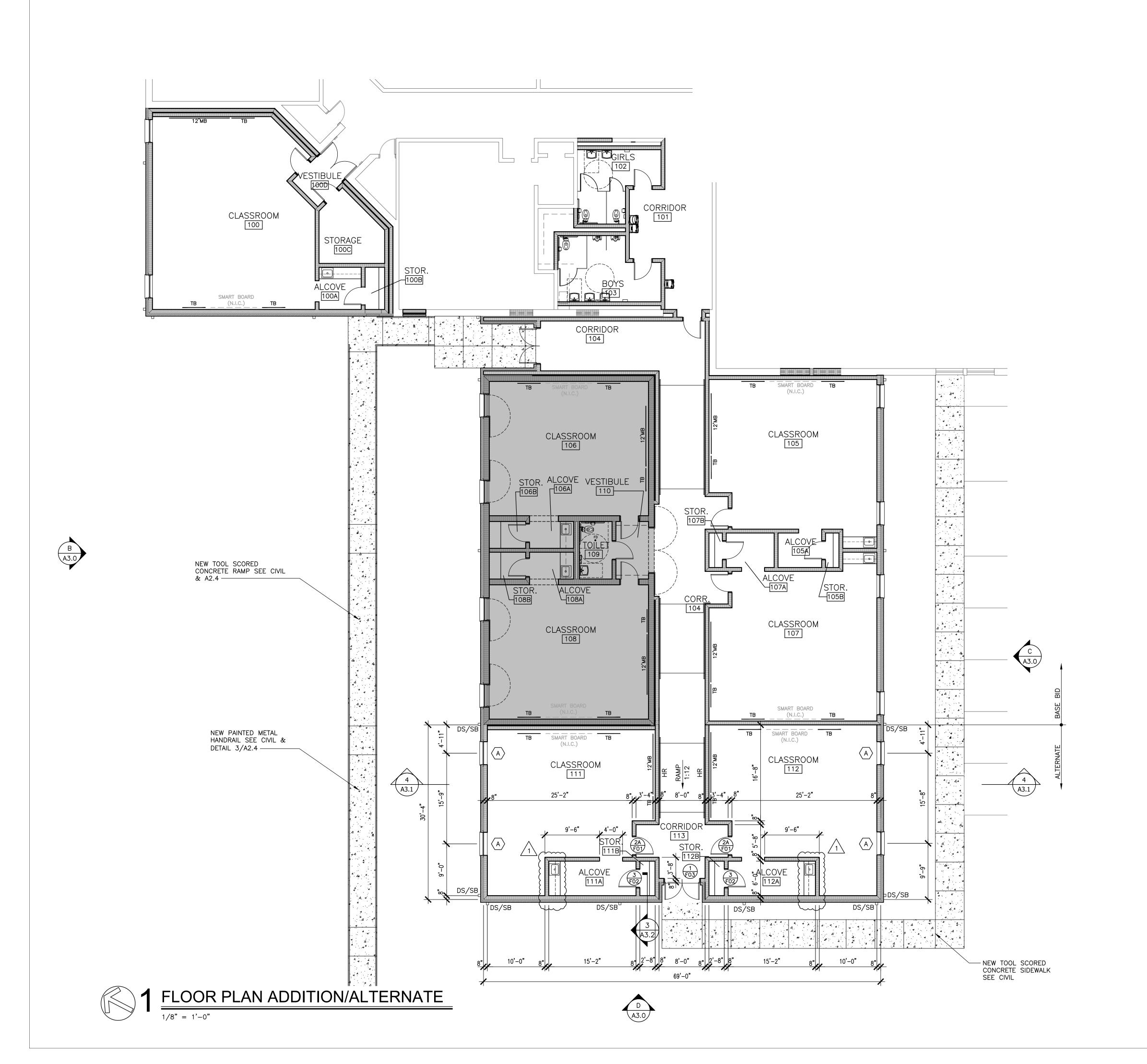
SUITE 200 • HOOVER, ALABAMA 35244 205-988-9112

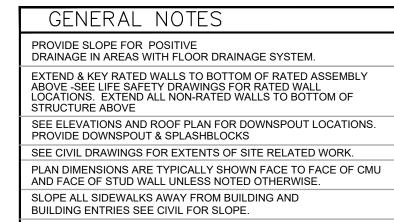
ADDENDUM NO. 1
CLASSROOM ADDITION TO ELVIN HILL ELEMENTARY SCHOOL
Architect Job No. 25-34
December 2, 2025
DCM #2025854

### **BIDS DUE:**

Tuesday, January 13, 2025, until 2:00 p.m., local time, held at Shelby County Board of Education, Facilities and Maintenance Building 125 Industrial Parkway Columbiana, AL 35051

The Plans and Specifications are here by amended. The following supersedes all contrary and/or conflicting information and is made part of the contract documents.


### **GENERAL**

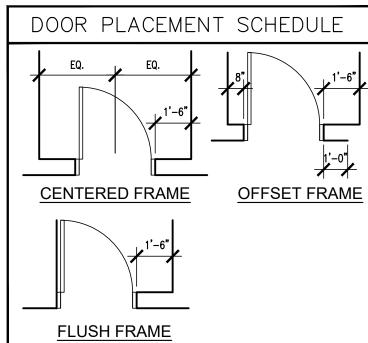

1. BIDS DUE: The date of the bid has changed to Tuesday, January 13, 2025.

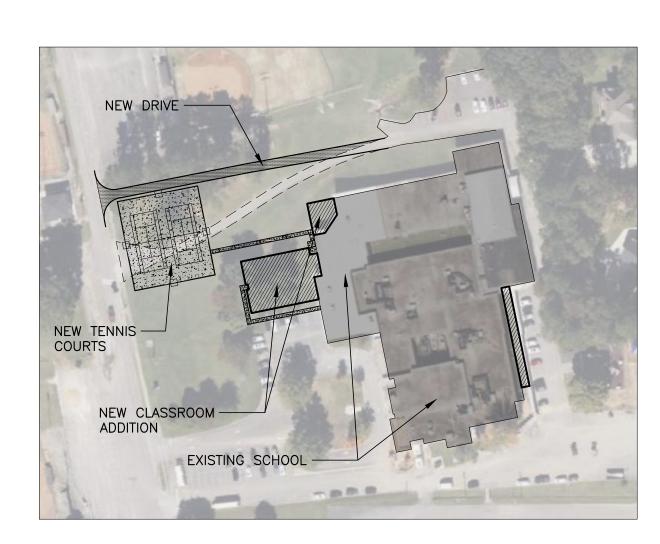
### **DRAWINGS**

- 1. **Sheet A2.0.1** Floor Plan Additional Alternate: See clouded for revisions.
- Sheet A10.0 Plans and Details Berm Removal & New Brick Facade: See clouded for revisions.
- 3. **Sheet M0.2** Mechanical Schedules: See clouded for revisions.
- 4. **Sheet M0.5** Mechanical Calculations and Controls: See clouded for revisions.
- 5. **Sheet Mo.6** Mechanical Controls: See clouded for revisions.

Job No. 25-34





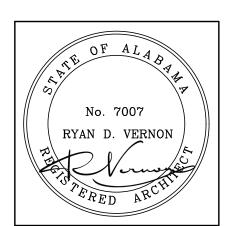


| BRICK PO                       | CKET SHALL BE 6" UNLE              | SS NOTED          | OTHERWISE                      |
|--------------------------------|------------------------------------|-------------------|--------------------------------|
|                                |                                    |                   |                                |
| SYN                            | MBOLS LEGE                         | ND                |                                |
| A300                           | ROOM NUMBER                        | (A)               | -DOOR TYPE<br>-RATING          |
| FE                             | SURFACE MOUNT<br>FIRE EXTINGUISHER | A A               | -HARDWARE SYMBOL<br>-HOLD OPEN |
| F.D.                           | FLOOR DRAIN                        | <u> </u>          |                                |
| МВ                             | MARKER BOARD                       | $A \rightarrow A$ | −ELEV. MARK<br>−SHEET NUMBER   |
| ОН                             | OPPOSITE HAND                      |                   |                                |
| DS/BT/<br>SB                   | DOWNSPOUT /<br>BOOT/SPLASHBLOCK    |                   | SECT. MARK                     |
| A                              | WINDOW MARK                        | A.1-              | SHEET NUMBER EXT. ELEVATION    |
| $\overline{\langle 1 \rangle}$ | STOREFRONT MARK                    | 5 -<br>(A5.1)     | ELEV. MARK                     |
| HR                             | HANDRAIL                           | (A5.1)            | SHEET NUMBER INT. ELEVATION    |
| ' ''`                          |                                    | ] ] [             | NEW DOOR AND SWING             |
| Ю                              | LIGHTING - SEE<br>ELECTRICAL       |                   | NEW DOOR AND SWING             |
| CR                             | CARD READER                        | WA                | WINDSTOP ANGLE                 |
|                                |                                    | •                 |                                |

| WALL TYPE     | LEGEND                                            |
|---------------|---------------------------------------------------|
| CMU PARTITION | CONCRETE MASONRY UNIT WALL.<br>SEE PLAN FOR WIDTH |
|               | NEW BRICK VENEER W/ AIR SPACE                     |

EXTERIOR AND REINFORCED CMU W/DAMPROOFING. PROVIDE WALL TIES @ 16" O.C.

| DOOR AND           | WINDOW LEGENI    | )      |
|--------------------|------------------|--------|
| DOOR TYPE (1)      | NO RATING        |        |
| DOOR TYPE + A (1A) | 20 MINUTE RATING |        |
| DOOR TYPE + D (1D) | 90 MINUTE RATING |        |
| НМЕ                | HOLLOW METAL FRA | ME     |
| HMD                | HOLLOW METAL DOC | )R     |
| SCWD               | SOLID CORE WOODE | N DOOR |
| ·                  | ·                |        |



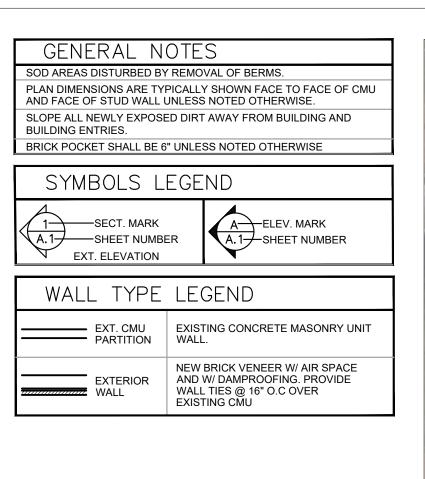


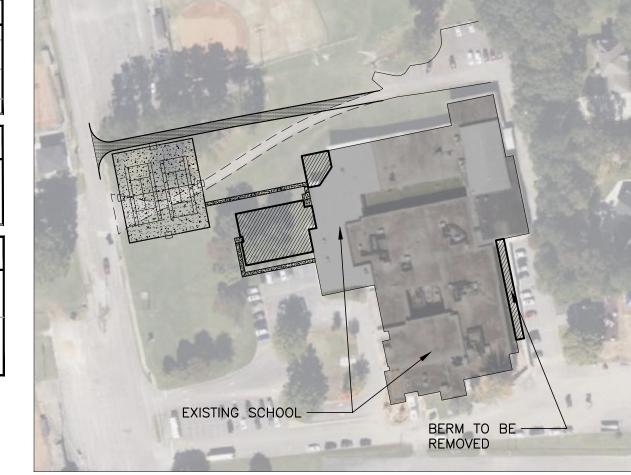

2 KEYPLAN



ا تن ELEMENTARY SCHOOL

SHEET TITLE: FLOOR PLAN ADDITION/ALTERNATE





| PROJ. MGR.: H. RASCO |
|----------------------|
| DRAWN: <b>JWW</b>    |
|                      |
| DATE: NOV. 7, 2025   |
| REVISIONS            |
| 11.20.25 ADD #1      |
|                      |
|                      |
|                      |
|                      |
|                      |

JOB NO. 25-34

SHEET NO: 
A2.0.1

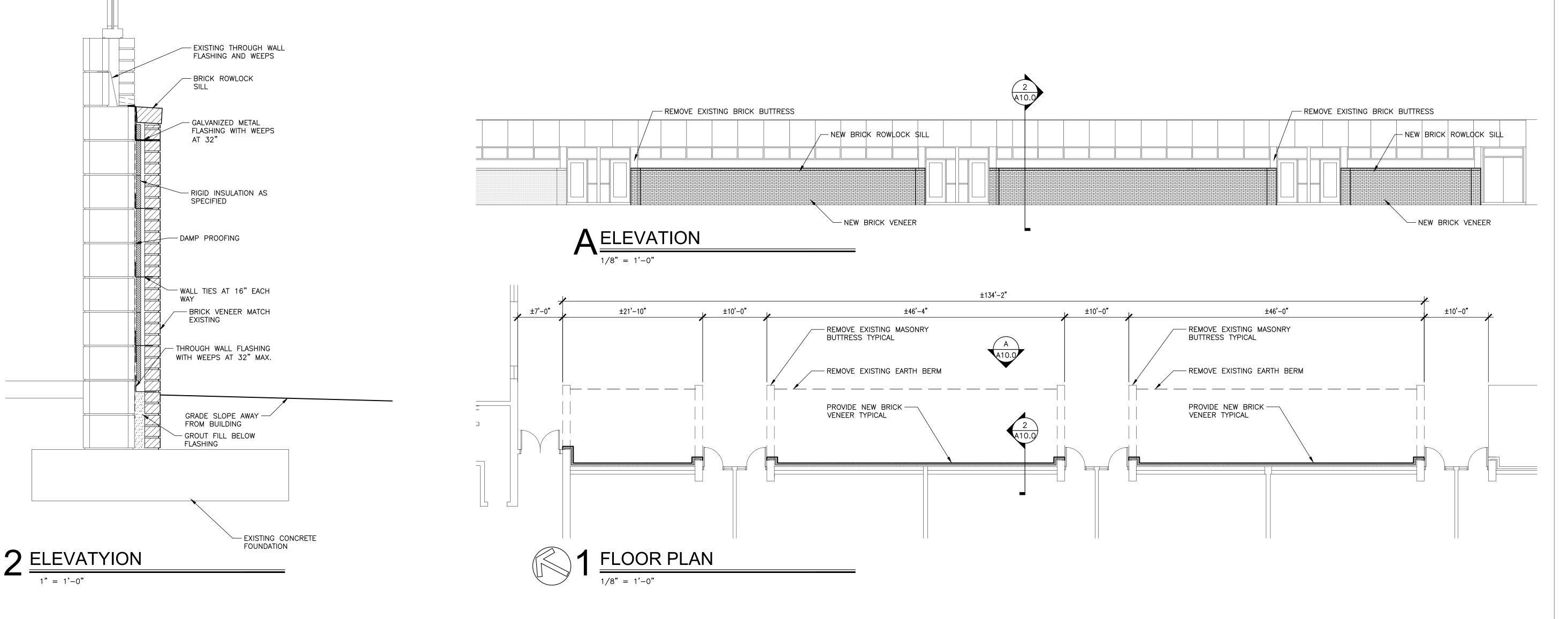
4 OF 22





3 KEYPLAN

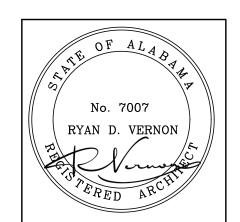
### DEMOLITION NOTES


1. DEMOLITION SCOPE OF WORK SHALL INCLUDE, BUT NOT BE LIMITED TO THE FOLLOWING: ALL EXISTING FLOOR FINISHES, ALL CEILING SYSTEMS, GYPSUM BOARD SOFFITS, WALL & ASSOCIATED DOOR AS INDICATED, ALL PLUMBING FIXTURES & ACCESSORIES, MARKER BOARDS, TACK BOARDS, FOLDING PARTITION SYSTEMS, MILLWORK/CASEWORK, ETC.

IT IS THE INTENT OF THESE DOCUMENTS FOR ALL DEMOLITION WORK AS REQUIRED TO PROVIDE NEW CONSTRUCTION TO BE INCLUDED IN BASE BID, WHETHER INDICATED OR NOT.

DASHED LINES INDICATE GENERAL EXISTING CONSTRUCTION TO BE REMOVED. CONTACT ARCHITECT FOR DEMOLITION CLARIFICATION IF UNCLEAR ON WHICH ITEMS ARE TO BE REMOVED.

- E. GENERAL CONTRACTOR SHALL REMOVE ALL ABANDONED ARCHITECTURAL, PLUMBING, MECHANICAL, ELECTRICAL CONSTRUCTION.
  PROTECT ITEMS TO BE RELOCATED OR DESIGNATED AS SALVAGED.
- CONTRACTOR SHALL PROTECT EXISTING CONSTRUCTION & SYSTEMS TO REMAIN AND CORRECT ANY DAMAGE RESULTING FROM DEMOLITION WORK. PROTECT FIRE ALARM SYSTEM AND MAINTAIN OPERATIONAL. MAINTAIN EXISTING FIRE WALL FUNCTIONAL.
- 4. COORDINATE WITH FINISH LEGEND AND SCHEDULE TO DETERMINE EXISTING SURFACES TO RECEIVE NEW FINISHES REMOVE EXISTING FINISHES AS REQUIRED AND MAKE EXISTING SURFACES READY TO RECEIVE NEW FINISHES. PATCH AND/OR REPAIR EXISTING ADJACENT CONSTRUCTION TO REMAIN.
- 5. DISCONNECT & REMOVE ANY EXISTING ABANDONED FLOOR CONDUIT AND OUTLETS. PATCH AND REPAIR SLAB.
- 6. CONTACT AND COORDINATE W/ ARCHITECT & STRUCTURAL ENGINEER BEFORE REMOVING OR ALTERING ANY STRUCTURAL COMPONENTS.


  SEE RESPECTIVE CIVIL, STRUCTURAL, PLUMBING, HVAC AND ELECTRICAL DRAWINGS FOR ADDITIONAL DEMOLITION REQUIREMENTS.
- 7. COORDINATE WITH THE OWNER BEFORE REMOVING ANY SALVAGEABLE MATERIALS & EQUIPMENT.
- 8. DEMOLITION WORK SHALL NOT CHANGE THE INTEGRITY OF EXISTING STRUCTURE, FIRE ALARM SYSTEM & FIRE RATED CONSTRUCTION TO REMAIN. ANY EXISTING FIRE RATED CONSTRUCTION TO REMAIN WHICH HAS BEEN AFFECTED BY DEMOLITION WORK MUST BE CORRECTED AND MADE TO MEET THE ORIGINAL RATING.
- 9. COORDINATE WITH ARCHITECTURAL, CIVIL, STRUCTURAL, MECHANICAL, PLUMBING & ELECTRICAL DRAWINGS TO DETERMINE LIMITS OF DEMOLITION REQUIRED FOR NEW CONSTRUCTION.





VIN HILL ELEMENTARY SCHOC VASHINGTON STREET, COLUMBIANA, ALABAMA 35051 BY COUNTY BOARD OF EDUCATION

SHEET TITLE:
PLANS AND DETAILS BERM REMOVAL & NEW
BRICK FACADE



|          | MGR.: H. RASCO |  |
|----------|----------------|--|
| DRAWN    | 1: JWW         |  |
| DATE:    | NOV. 7, 2025   |  |
| REVISION | ONS            |  |
|          |                |  |
|          |                |  |
|          |                |  |
|          |                |  |
|          |                |  |
|          |                |  |
|          |                |  |

JOB NO. **25-34**SHEET NO:

A10.0

1 OF 1

# ATHAN McKEE ARCHITECTS

### **AIR PURIFICATION SCHEDULE MINIMUM ION DENSITY** MINIMUM NEEDLE **GPS QUANTITY** V/Ø **MOUNTING LOCATION** SPACING (IONS/CC) 1 PER UNIT 1 EVERY 3/4" 265 **UNIT SERVED** 40 MILLION PER 0.75"

NOTES: . BASIS OF DESIGN: GLOBAL PLASMA SOLUTIONS: APPROVED EQUALS BY PHENOMENAL AIRE, ACTIVE AIR, AIRGENICS AND BIOXGEN SUBJECT TO SPECIFICATION COMPLIANCE.

2. MOUNT GPS-IMOD TO AIR INLET SIDE OF COOLING COIL.

3. IF CONTRACTOR SUBSTITUTES BASIS OF DESIGN WITH ANOTHER MANUFACTURER, CONTRACTOR SHALL COORDINATE ALL ELECTRICAL AND MECHANICAL CHANGES.

4. BI-POLAR IONIZATION SYSTEMS REQUIRING PERISHABLE GLASS TUBES ARE NOT ACCEPTABLE. 5. ALL MFGS MUST PASS UL-867-2007 OZONE CHAMBER TESTING BY EITHER UL OR ETL.

6. PROVIDE STAND ALONE ION DETECTOR TO COMMUNICATE WITH THE BAS. SYSTEMS WITHOUT ION DETECTORS SHALL NOT BE ACCEPTABLE.

7. IONIZATION BAR TO HAVE A MINIMUM OF 1 NEEDLEPOINT EVERY 0.75" OF COIL WIDTH, SYSTEMS WITH NEEDLES FURTHER APART SHALL NOT BE ACCEPTABLE.

8. IONIZATION SYSTEMS WITH MULTIPLE ION MODULES MOUNTED TO A BAR SHALL NOT BE AN ACCEPTABLE SUBSTITUTE.

9. IONIZATION SYSTEMS THAT DO NOT USE EPOXY TO PROTECT THE ION CIRCUITRY SHALL NOT BE ACCEPTABLE.

10. IONIZATION OUTPUT SHALL BE A MINIMUM OF 40 MILLION IONS/CC FOR EVERY 0.75" OF COIL WIDTH.

11. BIPOLAR IONIZATION UNIT SHALL DE-ENERGIZE UPON SYSTEM SHUTDOWN.

PROVIDE FOR ALL TWHP UNITS

**GPS-iRIB** 

### **FAN SCHEDULE**

## **FAN ACCESSORIES:**

1. BACKDRAFT DAMPER.

2. DISCONNECT SWITCH. 3. ALUMINUM CEILING GRILLE.

4. FAN SPEED CONTROLLER. 5. SPRING VIBRATION ISOLATORS.

6. FLEXIBLE CONNECTIONS.

7. BIRDSCREEN.

8. ROOF CURB

9. DIRECT DRIVE WITH FAN MOUNTED SOLID STATE

SPEED CONTROL EC MOTOR W/ VFD FOR SOFT START. 10. WALL SWITCH FOR SF-1, SF-2, & EF-1 AND ALL

ASSOCIATED CONTROLS TO BE ON EMERGENCY POWER 11. PROVIDE TRANSFORMER REQUIRED TO TIE TO ROOM

IF ANOTHER APPROVED MANUFACTURER IS USED, THE MECHANICAL CONTRACTOR IS SOLELY RESPONSIBLE FOR COORDINATING

ANY DEVIATIONS FROM THE SCHEDULED ELECTRICAL REQUIREMENTS WITH THE ELECTRICAL CONTRACTOR. ALL DEVIATIONS

LIGHTS.

|      | FAN  | AIRFLOW | E.S.P.   | WHEEL            |                         |      | WEICHT |       | BASIS OF DESIGN |    |                          |       |                  |              |                 |
|------|------|---------|----------|------------------|-------------------------|------|--------|-------|-----------------|----|--------------------------|-------|------------------|--------------|-----------------|
| MARK | TYPE | (CFM)   | (INW.G.) | SIZE<br>(INCHES) | CRITERIA<br>(SONES/dBA) | RPM  | (HP/W) | V     | PH              | HZ | WITH                     | (LBS) | ACCESSORIES      | MANUFACTURER | MODEL<br>NUMBER |
| EF-1 | 1    | 70      | 0.75     | 8                | 4 (SONNES)              | 1060 | 40 W   | 120 V | 1               | 60 | LIGHTS/SHELTER<br>SWITCH | 25    | 1,2,3,4,5,10,11  | СООК         | GC-148          |
| SF-1 | 2    | 485     | 0.75     | 8                | 13 (SONES)              | 1725 | 1/4 HP | 120 V | 1               | 60 | SHELTER<br>SWITCH        | 75    | 1,2,3,4,5,6,9,10 | COOK         | 100SQN-B        |
| SF-2 | 2    | 485     | 0.75     | 8                | 13 (SONES)              | 1725 | 1/4 HP | 120 V | 1               | 60 | SHELTER<br>SWITCH        | 75    | 1,2,3,4,5,6,9,10 | СООК         | 100SQN-B        |

1. PACKAGED THRU-WALL HEAT PUMP WITH ELECTRIC HEAT.

SHALL BE IDENTIFIED ON THE PRODUCT SUBMITTAL DATA.

### PACKAGED THRU-WALL AC UNIT

### **ACCESSORIES:**

1. WALL SLEEVE - COORDINATE SLEEVE DEPTH WITH WALL CONDITIONS.

2. EXTRUDED ALUMINUM ARCH. GRILLE WITH ANODIZED ALUMINUM FINISH. (COORDINATE GRILLE STYLE AND FINISH WITH ARCHITECT PRIOR TO ORDERING.)

3. CONDENSATE DRAIN KIT.

4. SUB-BASE KIT.

5. POWER DISCONNECT SWITCH

|        | TVDE | SUPPLY FAN       | OUTSIDE AIR | DX COOLING COIL CAPACITY | DX HEATING CAPACITY | ELEC         |       | E  | LECTRICAL |         |          |      |     | DIMENSIONS  | WEIGHT |               | QUANTITY         | BASIS OF  |
|--------|------|------------------|-------------|--------------------------|---------------------|--------------|-------|----|-----------|---------|----------|------|-----|-------------|--------|---------------|------------------|-----------|
| MARK   | TYPE | AIRFLOW<br>(CFM) | (CFM)       | TOTAL (MBH)              | TOTAL (MBH)         | HEAT<br>(KW) | V     | PH | HZ        | MCA (A) | MOCP (A) | EER  | СОР | (H x W x D) | (LBS.) | ACCESSORIES   | BASE / ALTERNATE | DESIGN    |
| TWHP-A | 1    | 341              | 75 CFM      | 14.2                     | 13.3                | 5            | 208 V | 1  | 60        | 27.5    | 30       | 10.4 | 3.1 | 16"x42"x21" | 150    | 1, 2, 3, 4, 5 | 6/10             | FRIEDRICH |

# OUTDOOR HEAT PUMP (MINI-SPLIT SYSTEM) SCHEDULE

1. OUTDOOR HEAT PUMP

**FAN TYPE:** 

1. CEILING MOUNTED EXHAUST FAN.

2. CENTRIFUGAL SQUARE INLINE - DIRECT DRIVE.

I. REFRIGERANT PIPING SHALL BE SIZED AND ROUTED PER MANUFACTURER'S RECOMMENDATIONS.

2. POWER TO INDOOR UNITS IS PROVIDED THRU OUTDOOR UNITS

3. REFRIGERANT CIRCUIT ACCESS PORTS LOCATED OUTDOORS SHALL BE FITTED WITH LOCKING-TYPE TAMPER-RESISTANT CAPS.

4. UNIT SHALL BE CAPABLE OF MINIMUM LINE LENGTH OF 65FT.

|       |      | COOLING           | HEATING        |     |    |    | ELECTRIC | AL       |                             | EFFIC | IENCY | WEIGHT | BASIS OF   |
|-------|------|-------------------|----------------|-----|----|----|----------|----------|-----------------------------|-------|-------|--------|------------|
| MARK  | TYPE | CAPACITY<br>(MBH) | CAPACITY (MBH) | V   | PH | HZ | MCA (A)  | MOCP (A) | RECOMENDED<br>FUSE SIZE (A) | SEER  | HSPF  | (LBS)  | DESIGN     |
| OHP-1 | 1    | 30                | 32.6           | 208 | 1  | 60 | 22       | 37       | 25                          | 21.9  | 10.3  | 170    | MITSUBISHI |
| OHP-2 | 1    | 30                | 32.6           | 208 | 1  | 60 | 22       | 37       | 25                          | 21.9  | 10.3  | 170    | MITSUBISHI |
| OHP-3 | 1    | 30                | 32.6           | 208 | 1  | 60 | 22       | 37       | 25                          | 21.9  | 10.3  | 170    | MITSUBISHI |
| OHP-4 | 1    | 30                | 32.6           | 208 | 1  | 60 | 22       | 37       | 25                          | 21.9  | 10.3  | 170    | MITSUBISHI |
| OHP-5 | 1    | 9                 | 12             | 208 | 1  | 60 | 13       | 22       | 15                          | 21    | 11.8  | 170    | MITSUBISHI |
| OHP-6 | 1    | 9                 | 12             | 208 | 1  | 60 | 13       | 22       | 15                          | 21    | 11.8  | 170    | MITSUBISHI |
| OHP-7 | 1    | 30                | 32.6           | 208 | 1  | 60 | 22       | 37       | 25                          | 21.9  | 10.3  | 170    | MITSUBISHI |
| OHP-8 | 1    | 42                | 48             | 208 | 1  | 60 | 34       | 56       | 35                          | 21    | 10.1  | 250    | MITSUBISHI |

# INDOOR HEAT PUMP (MINI-SPLIT SYSTEM) SCHEDULE

**ACCESSORIES:** 

CONNECTIONS.

5. INTEGRAL CONDENSATE PUMP.

6. SUPPLY AIR DUCT OUTLET.

1. INDOOR, WALL MOUNT 1. 3-POLE DISCONNECT SWITCH. 2. INDOOR, 2x2 CEILING CASSETTE 2. HARD WIRED UNIT CONTROLLER.

3. INDOOR, 33x33 CEILING CASSETTE

NOTES: 1. AIRFLOW RATED AT HIGH FAN SPEED.

2. POWER FOR INDOOR UNIT IS FED FROM OUTDOOR UNIT.

4. HEATING CAPACITY RATED AT 47°F.

3. COOLING CAPACITY RATED AT 95°F.

### REFRIGERANT: R454B

|       |      | AIRFLOW | NOMINAL | COOLING           | HEATING           | DIMENSIONS    | •     | ELECTF | RICAL |         | WEIGHT |             | BASIS OF   |
|-------|------|---------|---------|-------------------|-------------------|---------------|-------|--------|-------|---------|--------|-------------|------------|
| MARK  | TYPE | (CFM)   | TONS    | CAPACITY<br>(MBH) | CAPACITY<br>(MBH) | (IN.) (WxLxH) | V     | PH     | HZ    | MCA (A) | (LBS.) | ACCESSORIES | DESIGN     |
| IHP-1 | 3    | 880     | 2.5     | 27                | 32.6              | 33"x33"x12"   | 208 V | 1      | 60    | 1       | 75     | 1,2,3,5     | MITSUBISHI |
| IHP-2 | 3    | 880     | 2.5     | 27                | 32.6              | 33"x33"x12"   | 208 V | 1      | 60    | 1       | 75     | 1,2,3,5     | MITSUBISHI |
| IHP-3 | 3    | 880     | 2.5     | 27                | 32.6              | 33"x33"x12"   | 208 V | 1      | 60    | 1       | 75     | 1,2,3,5     | MITSUBISHI |
| IHP-4 | 3    | 880     | 2.5     | 27                | 32.6              | 33"x33"x12"   | 208 V | 1      | 60    | 1       | 75     | 1,2,3,5     | MITSUBISHI |
| IHP-5 | 2    | 300     | 0.75    | 9                 | 12                | 22"x22"x8"    | 208 V | 1      | 60    | 1       | 50     | 1,2,3,5     | MITSUBISHI |
| IHP-6 | 2    | 300     | 0.75    | 9                 | 12                | 22"x22"x8"    | 208 V | 1      | 60    | 1       | 50     | 1,2,3,5     | MITSUBISHI |
| IHP-7 | 3    | 880     | 2.5     | 27                | 32.6              | 33"x33"x12"   | 208 V | 1      | 60    | 1       | 75     | 1,2,3,5     | MITSUBISHI |
| IHP-8 | 3    | 1200    | 3.5     | 42                | 48                | 33"x33"x12"   | 208 V | 1      | 60    | 1       | 75     | 1,2,3,5     | MITSUBISHI |

# **ENERGY RECOVERY UNIT**

5. HINGED ACCESS DOORS...

TYPE:

DOWNFLOW PACKAGED, CONSTANT VOLUME, WITH DX COOLING COIL, ELECTRIC 1. COOLING CAPACITY IS NET CAPACITY @ 95°F AMBIENT. HEAT, HOT GAS RE-HEAT COIL, ENERGY RECOVERY WHEEL, AND MATCHED 2. UNIT SHALL BE ASHRAE 90.1 - 2013 COMPLIANT. CONDENSER.

5. UL LISTED

3. CKT 1: SPP

4. CKT 2: ELECTRIC HEAT

1. 2" THICK THROWAWAY FILTER, 30% EFFICIENT.

2. CONDENSER COIL GUARD. 3. DIRECT DRIVE SUPPLY W/ VFD AND EXHAUST FAN W/ VFD.

4. HEAD PRESSURE CONTROL TO 10°F AMBIENT.

7. OSA INTAKE HOOD AND EXHAUST HOOD WITH AUTO DAMPERS

8. MODULATING HOT GAS REHEAT COIL. 9. FACTORY ROOF CURB

10. MICROPROCESSOR CONTROLLER WITH BACNET INTERFACE. CONTROLLER SHALL BE CAPABLE OF

3. FULL PORT BALL VALVES & SCHRADER VALVES WITH FLARED

4. FIELD-INSTALLED CONDENSATE PUMP (120/1/60) - 1 GPH @ 33 FT. HD.

PROVIDING SEQUENCES ON CONTROLS DRAWINGS.

|       | SUF  | PPLY FAN        | EXH  | AUST FAN        | WH                          | HEEL IN SUM    | IMER                              | W                          | HEEL IN WII                 | NTER                              |     |    | E  | LECTRICAL           |                      | ELECT | TRIC HEAT | D           | X COOLING      | COIL          |              |        |                 |                      | BASIS OF DE  | ESIGN                  |
|-------|------|-----------------|------|-----------------|-----------------------------|----------------|-----------------------------------|----------------------------|-----------------------------|-----------------------------------|-----|----|----|---------------------|----------------------|-------|-----------|-------------|----------------|---------------|--------------|--------|-----------------|----------------------|--------------|------------------------|
| MARK  | CFM  | "W.G.<br>E.S.P. | CFM  | "W.G.<br>E.S.P. | OUTSII<br>EAT<br>(DB/WB) °F | LAT<br>(DB/WB) | EXHAUST<br>ENTERING<br>(DB/WB) °F | OUTSI<br>EAT<br>(DB/WB) °F | DE AIR<br>LAT<br>(DB/WB) °F | EXHAUST<br>ENTERING<br>(DB/WB) °F | V   | PH | Hz | MCA<br>CKT 1/ CKT 2 | MOCP<br>CKT 1/ CKT 2 | KW    | STAGES    | LAT (DB/WB) | TOTAL<br>(MBH) | SENS<br>(MBH) | NOM.<br>TONS | ISMRE2 | WEIGHT<br>(LBS) | ACCESSORIES          | MANUFACTURER | MODEL                  |
| ERU-1 | 1525 | 1.1 1           | 1375 | 1.1 3/4         | 95/78                       | 75/62.5        | 62.5/50.2                         | 17/13.6                    | 70/58                       | 70/58                             | 208 | 3  | 60 | 84.9                | 90                   | 15.5  | SCR       | 54.1/54.0   | 67.6           | 43.7          | 5.5          | 8.0    | 1800            | 1,2,3,4,5,6,7,8,9,10 | VALENT       | VXE-12-30<br>D-5J-1-A2 |

EMENTARY

SCI

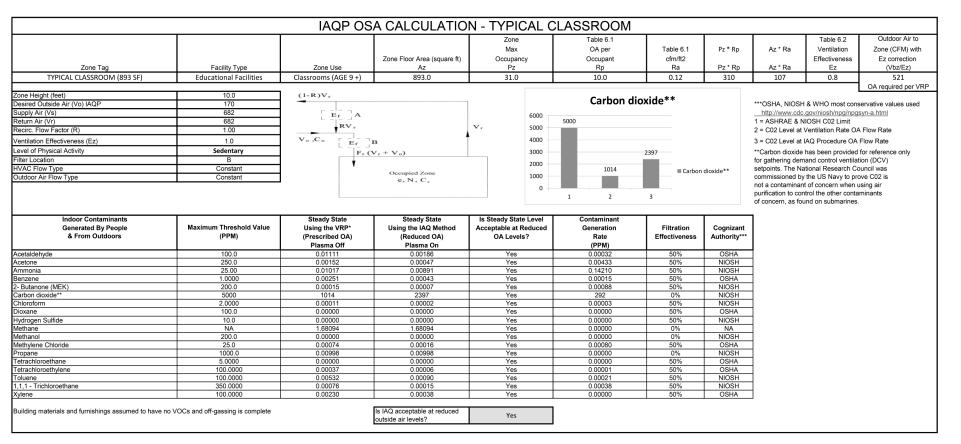
MECHANICAL SCHEDULES

SHEET TITLE:

| PRO  | J. MGR.: | JWS         |
|------|----------|-------------|
| DRA  | NN:      | JWS         |
|      |          |             |
| DATE | Ξ:       | 11-07-2025  |
| REVI | SIONS    |             |
| 1    | 12/2/25  | ADDENDUM #1 |
|      |          |             |
|      |          |             |
|      |          |             |

SHEET NO:

|                 |                          | Rp      | Pz     | Ra      | Az  | Vbz | Ez   | Voz | Provided OSA<br>(IAQP) |  |
|-----------------|--------------------------|---------|--------|---------|-----|-----|------|-----|------------------------|--|
| Room            | Room Type                | cfm / P | People | cfm/ft² | ft² | cfm |      | cfm | cfm                    |  |
| 00 CLASSROOM    | Classrooms (ages 9 plus) | 10      | 31     | 0.12    | 893 | 417 | 0.80 | 521 | 170                    |  |
| 09 CLASSROOM    | Classrooms (ages 9 plus) | 10      | 23     | 0.12    | 672 | 311 | 0.80 | 388 | 115                    |  |
| 06 CLASSROOM    | Classrooms (ages 9 plus) | 10      | 23     | 0.12    | 665 | 310 | 0.80 | 387 | 115                    |  |
| 08 CLASSROOM    | Classrooms (ages 9 plus) | 10      | 23     | 0.12    | 665 | 310 | 0.80 | 387 | 115                    |  |
| 07 CLASSROOM    | Classrooms (ages 9 plus) | 10      | 26     | 0.12    | 748 | 350 | 0.80 | 437 | 180                    |  |
| 05 CLASSROOM    | Classrooms (ages 9 plus) | 10      | 26     | 0.12    | 748 | 350 | 0.80 | 437 | 180                    |  |
| 103 BOYS TOILET | Toilets-public           | 0       | 0      | 0.00    | 177 | 0   | 0.80 | 0   | 0                      |  |
| 02 GIRLS TOILET | Toilets-public           | 0       | 0      | 0.00    | 146 | 0   | 0.80 | 0   | 0                      |  |
| SHELTER TOILET  | Toilets-public           | 0       | 0      | 0.00    | 60  | 0   | 0.80 | 0   | 50                     |  |
| 04 CORRIDOR     | Corridors                | 0       | 0      | 0.06    | 660 | 40  | 0.80 | 50  | 225                    |  |
| 01 CORRIDOR     | Corridors                | 0       | 0      | 0.06    | 330 | 20  | 0.80 | 25  | 375                    |  |


|               |              | EXHAUST<br>RATE     | EXHAUST RATE  | EXHAUST RATE | REQUIRED<br>EXHAUST | PROVIDI<br>EXHAUS |
|---------------|--------------|---------------------|---------------|--------------|---------------------|-------------------|
| # OF FIXTURES | # OF SHOWERS | CFM/FT <sup>2</sup> | CFM / FIXTURE | CFM/ SHOWER  | CFM                 | CFM               |
| 0             | 0            | N/A                 | N/A           | N/A          | 0                   | 170               |
| 0             | 0            | N/A                 | N/A           | N/A          | 0                   | 115               |
| 0             | 0            | N/A                 | N/A           | N/A          | 0                   | 115               |
| 0             | 0            | N/A                 | N/A           | N/A          | 0                   | 115               |
| 0             | 0            | N/A                 | 50            | N/A          | 0                   | 180               |
| 0             | 0            | N/A                 | N/A           | N/A          | 0                   | 180               |
| 3             | 0            | N/A                 | 70            | N/A          | 210                 | 220               |
| 2             | 0            | N/A                 | 70            | N/A          | 140                 | 140               |
| 1             | 0            | N/A                 | 70            | N/A          | 70                  | 70                |
| 0             | 0            | N/A                 | N/A           | N/A          | 0                   | 140               |
| 0             | 0            | N/A                 | N/A           | N/A          | 0                   | 0                 |
|               | •            | •                   | Total Requ    | ired Exhaust | 420                 |                   |
|               |              |                     | Total Provi   | ded Exhaust  |                     | 1445              |

### **BASE BID**

| Room         Room Type         cfm / P         People         cfm/ft²         ft²         cfm         cfm         cfm           100 CLASSROOM         Classrooms (ages 9 plus)         10         31         0.12         893         417         0.80         521         170           109 CLASSROOM         Classrooms (ages 9 plus)         10         23         0.12         672         311         0.80         388         115           106 CLASSROOM         Classrooms (ages 9 plus)         10         23         0.12         665         310         0.80         387         115           108 CLASSROOM         Classrooms (ages 9 plus)         10         23         0.12         665         310         0.80         387         115           107 CLASSROOM         Classrooms (ages 9 plus)         10         23         0.12         748         350         0.80         437         130           105 CLASSROOM         Classrooms (ages 9 plus)         10         26         0.12         748         350         0.80         437         130           110 CLASSROOM         Classrooms (ages 9 plus)         10         25         0.12         748         350         0.80         419         125 <th></th> <th></th> <th>Rp</th> <th>Pz</th> <th>Ra</th> <th>Az</th> <th>Vbz</th> <th>Ez</th> <th>Voz</th> <th>Provided OSA<br/>(IAQP)</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                       | Rp      | Pz     | Ra      | Az  | Vbz | Ez   | Voz | Provided OSA<br>(IAQP) |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------------------------------|---------|--------|---------|-----|-----|------|-----|------------------------|
| 109 CLASSROOM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Room             | Room Type                             | cfm / P | People | cfm/ft² | ft² | cfm |      | cfm | cfm                    |
| 106 CLASSROOM   Classrooms (ages 9 plus)   10   23   0.12   665   310   0.80   387   115   108 CLASSROOM   Classrooms (ages 9 plus)   10   23   0.12   665   310   0.80   387   115   107 CLASSROOM   Classrooms (ages 9 plus)   10   26   0.12   748   350   0.80   437   130   105 CLASSROOM   Classrooms (ages 9 plus)   10   26   0.12   748   350   0.80   437   130   105 CLASSROOM   Classrooms (ages 9 plus)   10   26   0.12   748   350   0.80   437   130   107 CLASSROOM   Classrooms (ages 9 plus)   10   25   0.12   748   350   0.80   449   125   110 CLASSROOM   Classrooms (ages 9 plus)   10   25   0.12   712   335   0.80   449   125   110 CLASSROOM   Classrooms (ages 9 plus)   10   25   0.12   712   335   0.80   449   125   110 CLASSROOM   107    | 100 CLASSROOM    | Classrooms (ages 9 plus)              | 10      | 31     | 0.12    | 893 | 417 | 0.80 | 521 | 170                    |
| 106 CLASSROOM         Classrooms (ages 9 plus)         10         23         0.12         665         310         0.80         387         115           108 CLASSROOM         Classrooms (ages 9 plus)         10         23         0.12         665         310         0.80         387         115           107 CLASSROOM         Classrooms (ages 9 plus)         10         26         0.12         748         350         0.80         437         130           105 CLASSROOM         Classrooms (ages 9 plus)         10         26         0.12         748         350         0.80         437         130           110 CLASSROOM         Classrooms (ages 9 plus)         10         25         0.12         712         335         0.80         419         125           110 LASSROOM         Classrooms (ages 9 plus)         10         25         0.12         712         335         0.80         419         125           110 BOYS TOILET         Toilets-public         0         0         0.00         177         0         0.80         0         0           104 CORRIDOR         Corridors         0         0         0.00         60         0         0.80         0         50      <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 109 CLASSROOM    | i i i i i i i i i i i i i i i i i i i | 10      | 23     | 0.12    | 672 | 311 | 0.80 | 388 | 115                    |
| 108 CLASSROOM         Classrooms (ages 9 plus)         10         23         0.12         665         310         0.80         387         115           107 CLASSROOM         Classrooms (ages 9 plus)         10         26         0.12         748         350         0.80         437         130           105 CLASSROOM         Classrooms (ages 9 plus)         10         26         0.12         748         350         0.80         437         130           110 CLASSROOM         Classrooms (ages 9 plus)         10         25         0.12         712         335         0.80         419         125           110 CLASSROOM         Classrooms (ages 9 plus)         10         25         0.12         712         335         0.80         419         125           110 BOYS TOILET         Toilets-public         0         0         0.00         177         0         0.80         0         0           102 GIRLS TOILET         Toilets-public         0         0         0.00         146         0         0.80         0         0           SHELTER TOILET         Toilets-public         0         0         0.06         660         40         0.80         50         100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 106 CLASSROOM    | i                                     | 10      | 23     | 0.12    | 665 | 310 | 0.80 | 387 | 115                    |
| 107 CLASSROOM         Classrooms (ages 9 plus)         10         26         0.12         748         350         0.80         437         130           105 CLASSROOM         Classrooms (ages 9 plus)         10         26         0.12         748         350         0.80         437         130           110 CLASSROOM         Classrooms (ages 9 plus)         10         25         0.12         712         335         0.80         419         125           111 CLASSROOM         Classrooms (ages 9 plus)         10         25         0.12         712         335         0.80         419         125           1103 BOYS TOILET         Toilets-public         0         0         0.00         177         0         0.80         0         0           102 GIRLS TOILET         Toilets-public         0         0         0.00         146         0         0.80         0         0           SHELTER TOILET         Toilets-public         0         0         0.00         60         0         0.80         0         50           104 CORRIDOR         Corridors         0         0         0.06         660         40         0.80         50         100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 108 CLASSROOM    |                                       | 10      | 23     | 0.12    | 665 | 310 | 0.80 | 387 | 115                    |
| 110 CLASSROOM         Classrooms (ages 9 plus)         10         25         0.12         712         335         0.80         419         125           111 CLASSROOM         Classrooms (ages 9 plus)         10         25         0.12         712         335         0.80         419         125           1103 BOYS TOILET         Toilets-public         0         0         0.00         177         0         0.80         0         0           102 GIRLS TOILET         Toilets-public         0         0         0.00         146         0         0.80         0         0           SHELTER TOILET         Toilets-public         0         0         0.00         60         0         0.80         0         50           104 CORRIDOR         Corridors         0         0         0.06         660         40         0.80         50         100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 107 CLASSROOM    | <del></del>                           | 10      | 26     | 0.12    | 748 | 350 | 0.80 | 437 | 130                    |
| 111 CLASSROOM         Classrooms (ages 9 plus)         10         25         0.12         712         335         0.80         419         125           1103 BOYS TOILET         Toilets-public         0         0         0.00         177         0         0.80         0         0           102 GIRLS TOILET         Toilets-public         0         0         0.00         146         0         0.80         0         0           SHELTER TOILET         Toilets-public         0         0         0.00         60         0         0.80         0         50           104 CORRIDOR         Corridors         0         0         0.06         660         40         0.80         50         100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 105 CLASSROOM    | Classrooms (ages 9 plus)              | 10      | 26     | 0.12    | 748 | 350 | 0.80 | 437 | 130                    |
| 1103 BOYS TOILET         Toilets-public         0         0         0.00         177         0         0.80         0         0           102 GIRLS TOILET         Toilets-public         0         0         0.00         146         0         0.80         0         0           SHELTER TOILET         Toilets-public         0         0         0.00         60         0         0.80         0         50           104 CORRIDOR         Corridors         0         0         0.06         660         40         0.80         50         100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 110 CLASSROOM    | Classrooms (ages 9 plus)              | 10      | 25     | 0.12    | 712 | 335 | 0.80 | 419 | 125                    |
| 102 GIRLS TOILET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 111 CLASSROOM    | Classrooms (ages 9 plus)              | 10      | 25     | 0.12    | 712 | 335 | 0.80 | 419 | 125                    |
| SHELTER TOILET         Toilets-public         0         0         0.00         60         0         0.80         0         50           104 CORRIDOR         Corridors         0         0         0.06         660         40         0.80         50         100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1103 BOYS TOILET | Toilets-public                        | 0       | 0      | 0.00    | 177 | 0   | 0.80 | 0   | 0                      |
| 104 CORRIDOR Corridors 0 0 0.06 660 40 0.80 50 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 102 GIRLS TOILET | Toilets-public                        | 0       | 0      | 0.00    | 146 | 0   | 0.80 | 0   | 0                      |
| TO TO STATE OF THE | SHELTER TOILET   | Toilets-public                        | 0       | 0      | 0.00    | 60  | 0   | 0.80 | 0   | 50                     |
| 101 CORRIDOR Corridors 0 0 0.06 330 20 0.80 25 350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 104 CORRIDOR     | Corridors                             | 0       | 0      | 0.06    | 660 | 40  | 0.80 | 50  | 100                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 101 CORRIDOR     | Corridors                             | 0       | 0      | 0.06    | 330 | 20  | 0.80 | 25  | 350                    |

|               |              | EXHAUST<br>RATE     | EXHAUST RATE  | EXHAUST RATE | REQUIRED<br>EXHAUST | PROVIDED<br>EXHAUST |
|---------------|--------------|---------------------|---------------|--------------|---------------------|---------------------|
| # OF FIXTURES | # OF SHOWERS | CFM/FT <sup>2</sup> | CFM / FIXTURE | CFM/ SHOWER  | CFM                 | CFM                 |
| 0             | 0            | N/A                 | N/A           | N/A          | 0                   | 170                 |
| 0             | 0            | N/A                 | N/A           | N/A          | 0                   | 115                 |
| 0             | 0            | N/A                 | N/A           | N/A          | 0                   | 115                 |
| 0             | 0            | N/A                 | N/A           | N/A          | 0                   | 115                 |
| 0             | 0            | N/A                 | 50            | N/A          | 0                   | 130                 |
| 0             | 0            | N/A                 | N/A           | N/A          | 0                   | 130                 |
| 0             | 0            | N/A                 | N/A           | N/A          | 0                   | 125                 |
| 0             | 0            | N/A                 | N/A           | N/A          | 0                   | 125                 |
| 3             | 0            | N/A                 | 70            | N/A          | 210                 | 220                 |
| 2             | 0            | N/A                 | 70            | N/A          | 140                 | 140                 |
| 1             | 0            | N/A                 | 70            | N/A          | 70                  | 70                  |
| 0             | 0            | N/A                 | N/A           | N/A          | 0                   | 0                   |
| 0             | 0            | N/A                 | N/A           | N/A          | 0                   | 0                   |
|               |              |                     |               | ired Exhaust | 420                 |                     |
|               |              |                     | Total Provi   | ded Exhaust  |                     | 1455                |

## **ALTERNATE BID**



|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                             | IAQP OS                                                                                                                                                                          | A CALCULATIO                                                                                                                                                                     | N - TYPICAL C                                                                                  | CLASSROOM                                                                                                                                                                                             |                                                                                             |                                                                                                                                                                             |                |                                            |                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------------------------------------|-----------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                             |                                                                                                                                                                                  |                                                                                                                                                                                  | Zone                                                                                           | Table 6.1                                                                                                                                                                                             |                                                                                             |                                                                                                                                                                             |                | Table 6.2                                  | Outdoor Air to        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                             |                                                                                                                                                                                  |                                                                                                                                                                                  | Max                                                                                            | OA per                                                                                                                                                                                                | Table 6.1                                                                                   | Pz * Rp                                                                                                                                                                     | Az * Ra        | Ventilation                                | Zone (CFM) wit        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                             |                                                                                                                                                                                  | Zone Floor Area (square ft)                                                                                                                                                      | Occupancy                                                                                      | Occupant                                                                                                                                                                                              | cfm/ft2                                                                                     |                                                                                                                                                                             |                | Effectiveness                              | Ez correction         |
| Zone Tag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Facility Type                                                                                                                                                                                                               | Zone Use                                                                                                                                                                         | Az                                                                                                                                                                               | Pz                                                                                             | Rp                                                                                                                                                                                                    | Ra                                                                                          | Pz * Rp                                                                                                                                                                     | Az * Ra        | Ez                                         | (Vbz/Ez)              |
| TYPICAL CLASSROOM (712 SF) CR 110/111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Educational Facilities                                                                                                                                                                                                      | Classrooms (AGE 9 +)                                                                                                                                                             | 712.0                                                                                                                                                                            | 25.0                                                                                           | 10.0                                                                                                                                                                                                  | 0.12                                                                                        | 250                                                                                                                                                                         | 85             | 0.8                                        | 419                   |
| ne Height (feet)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10.0                                                                                                                                                                                                                        | (1-R)V <sub>r</sub>                                                                                                                                                              |                                                                                                                                                                                  |                                                                                                |                                                                                                                                                                                                       |                                                                                             |                                                                                                                                                                             |                |                                            | OA required per \     |
| esired Outside Air (Vo) IAQP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 125                                                                                                                                                                                                                         | _                                                                                                                                                                                |                                                                                                                                                                                  |                                                                                                | Carbon di                                                                                                                                                                                             | oxide**                                                                                     |                                                                                                                                                                             | ***OSHA, NIOSH | I & WHO most con                           | servative values used |
| upply Air (Vs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 682                                                                                                                                                                                                                         | E <sub>f</sub> A                                                                                                                                                                 |                                                                                                                                                                                  | 6000                                                                                           |                                                                                                                                                                                                       |                                                                                             |                                                                                                                                                                             |                | .gov/niosh/npg/npg                         |                       |
| eturn Air (Vr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 682                                                                                                                                                                                                                         | L - 1                                                                                                                                                                            |                                                                                                                                                                                  |                                                                                                | 5000                                                                                                                                                                                                  |                                                                                             |                                                                                                                                                                             | 1 = ASHRAE & N |                                            |                       |
| ecirc. Flow Factor (R)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.00                                                                                                                                                                                                                        | RV r                                                                                                                                                                             |                                                                                                                                                                                  | Vr 5000                                                                                        |                                                                                                                                                                                                       |                                                                                             |                                                                                                                                                                             |                | Ventilation Rate O                         | A Flow Rate           |
| entilation Effectiveness (Ez)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.8                                                                                                                                                                                                                         | Vo,Co FFC                                                                                                                                                                        |                                                                                                                                                                                  | 4000                                                                                           |                                                                                                                                                                                                       |                                                                                             |                                                                                                                                                                             |                | IAQ Procedure OA                           |                       |
| ( )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                             | E <sub>f</sub>   '                                                                                                                                                               |                                                                                                                                                                                  |                                                                                                |                                                                                                                                                                                                       | 2590                                                                                        |                                                                                                                                                                             |                |                                            |                       |
| evel of Physical Activity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Sedentary                                                                                                                                                                                                                   | F <sub>r</sub> (\                                                                                                                                                                | $V_r + V_o$ )                                                                                                                                                                    | 3000                                                                                           |                                                                                                                                                                                                       | 2.350                                                                                       |                                                                                                                                                                             |                | has been provided                          |                       |
| ter Location                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | В                                                                                                                                                                                                                           |                                                                                                                                                                                  |                                                                                                                                                                                  | 2000                                                                                           |                                                                                                                                                                                                       |                                                                                             |                                                                                                                                                                             |                | nand control ventila                       |                       |
| VAC Flow Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Constant                                                                                                                                                                                                                    |                                                                                                                                                                                  | Occupied Zone                                                                                                                                                                    | 1000                                                                                           | 1016                                                                                                                                                                                                  | ■ Carbon                                                                                    | dioxide**                                                                                                                                                                   |                | ational Research Co                        |                       |
| utdoor Air Flow Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Constant                                                                                                                                                                                                                    |                                                                                                                                                                                  | e, N, C,                                                                                                                                                                         | 1000                                                                                           |                                                                                                                                                                                                       |                                                                                             |                                                                                                                                                                             |                | the US Navy to pr                          |                       |
| Indoor Contaminants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Maximum Threshold Value                                                                                                                                                                                                     | Steady State                                                                                                                                                                     | Steady State                                                                                                                                                                     | Is Steady State Level                                                                          | Contaminant                                                                                                                                                                                           | 3                                                                                           | Commission                                                                                                                                                                  |                | ntrol the other conta<br>und on submarines |                       |
| Generated By People                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Maximum Threshold Value<br>(PPM)                                                                                                                                                                                            | Using the VRP*                                                                                                                                                                   | Using the IAQ Method                                                                                                                                                             | Is Steady State Level Acceptable at Reduced                                                    | Contaminant<br>Generation                                                                                                                                                                             | Filtration                                                                                  | Cognizant<br>Authority***                                                                                                                                                   |                |                                            |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Maximum Threshold Value<br>(PPM)                                                                                                                                                                                            |                                                                                                                                                                                  |                                                                                                                                                                                  | Is Steady State Level                                                                          | Contaminant                                                                                                                                                                                           | <u> </u>                                                                                    | Cognizant<br>Authority***                                                                                                                                                   |                |                                            |                       |
| Generated By People                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                             | Using the VRP*<br>(Prescribed OA)                                                                                                                                                | Using the IAQ Method<br>(Reduced OA)                                                                                                                                             | Is Steady State Level Acceptable at Reduced                                                    | Contaminant<br>Generation<br>Rate                                                                                                                                                                     | Filtration                                                                                  |                                                                                                                                                                             |                |                                            |                       |
| Generated By People<br>& From Outdoors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (PPM)                                                                                                                                                                                                                       | Using the VRP*<br>(Prescribed OA)<br>Plasma Off                                                                                                                                  | Using the IAQ Method<br>(Reduced OA)<br>Plasma On                                                                                                                                | Is Steady State Level<br>Acceptable at Reduced<br>OA Levels?                                   | Contaminant<br>Generation<br>Rate<br>(PPM)                                                                                                                                                            | Filtration<br>Effectiveness                                                                 | Authority***                                                                                                                                                                |                |                                            |                       |
| Generated By People<br>& From Outdoors<br>cetaldehyde                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (PPM)<br>100.0<br>250.0<br>25.00                                                                                                                                                                                            | Using the VRP* (Prescribed OA) Plasma Off  0.01111  0.00159  0.01232                                                                                                             | Using the IAQ Method<br>(Reduced OA)<br>Plasma On<br>0.00151                                                                                                                     | Is Steady State Level Acceptable at Reduced OA Levels?  Yes                                    | Contaminant Generation Rate (PPM) 0.00032                                                                                                                                                             | Filtration<br>Effectiveness<br>50%<br>50%                                                   | Authority*** OSHA                                                                                                                                                           |                |                                            |                       |
| Generated By People & From Outdoors  cetaldehyde cetone mmonia enzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (PPM)  100.0 250.0 25.00 1.0000                                                                                                                                                                                             | Using the VRP*<br>(Prescribed OA)<br>Plasma Off<br>0.01111<br>0.00159<br>0.01232<br>0.00252                                                                                      | Using the ÍAQ Method<br>(Reduced OA)<br>Plasma On<br>0.00151<br>0.00046<br>0.00976                                                                                               | Is Steady State Level Acceptable at Reduced OA Levels?  Yes Yes Yes Yes Yes                    | Contaminant Generation Rate (PPM) 0.00032 0.00433 0.14210 0.00015                                                                                                                                     | Filtration<br>Effectiveness<br>50%<br>50%<br>50%<br>50%                                     | Authority***  OSHA  NIOSH  NIOSH  OSHA                                                                                                                                      |                |                                            |                       |
| Generated By People & From Outdoors  Detaildehyde Detaild | (PPM)  100.0 250.0 25.00 1.0000 200.0                                                                                                                                                                                       | Using the VRP*<br>(Prescribed OA)<br>Plasma Off<br>0.01111<br>0.00159<br>0.01232<br>0.00252<br>0.00017                                                                           | Using the ÍAQ Method<br>(Reduced OA)<br>Plasma On<br>0.00151<br>0.00046<br>0.00976<br>0.00035                                                                                    | Is Steady State Level Acceptable at Reduced OA Levels?  Yes Yes Yes Yes Yes Yes Yes            | Contaminant<br>Generation<br>Rate<br>(PPM)<br>0.00032<br>0.00433<br>0.14210<br>0.00015<br>0.00088                                                                                                     | Filtration<br>Effectiveness<br>50%<br>50%<br>50%<br>50%<br>50%                              | Authority***  OSHA NIOSH NIOSH OSHA NIOSH                                                                                                                                   |                |                                            |                       |
| Generated By People & From Outdoors  cetaldehyde betone mmonia enzene Butanone (MEK) arbon dioxide**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (PPM)  100.0 250.0 25.00 1.0000 200.0 5000                                                                                                                                                                                  | Using the VRP* (Prescribed OA) Plasma Off 0.01111 0.00159 0.01232 0.00252 0.00017                                                                                                | Using the IAQ Method<br>(Reduced OA)<br>Plasma On<br>0.00151<br>0.00046<br>0.00976<br>0.00035<br>0.00007                                                                         | Is Steady State Level Acceptable at Reduced OA Levels?  Yes Yes Yes Yes Yes Yes Yes Yes Yes    | Contaminant<br>Generation<br>Rate<br>(PPM)<br>0.00032<br>0.00433<br>0.14210<br>0.00015<br>0.00088                                                                                                     | Filtration<br>Effectiveness<br>50%<br>50%<br>50%<br>50%<br>50%                              | Authority***  OSHA NIOSH NIOSH OSHA NIOSH NIOSH NIOSH                                                                                                                       |                |                                            |                       |
| Generated By People & From Outdoors  cetaldehyde cetone mmonia enzene Butanone (MEK) arbon dioxide*** hloroform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (PPM)  100.0  250.0  25.00  1,0000  200.0  5000  2,0000                                                                                                                                                                     | Using the VRP* (Prescribed OA) Plasma Off 0.01111 0.00159 0.01232 0.00252 0.00017 1016 0.00011                                                                                   | Using the IAQ Method<br>(Reduced OA)<br>Plasma On<br>0.00151<br>0.00046<br>0.00976<br>0.00035<br>0.00007<br>2590<br>0.00002                                                      | Is Steady State Level Acceptable at Reduced OA Levels?  Yes Yes Yes Yes Yes Yes Yes Yes Yes Ye | Contaminant<br>Generation<br>Rate<br>(PPM)<br>0.00032<br>0.00433<br>0.14210<br>0.00015<br>0.00088<br>292<br>0.00003                                                                                   | Filtration<br>Effectiveness<br>50%<br>50%<br>50%<br>50%<br>50%<br>50%<br>50%                | Authority***  OSHA NIOSH NIOSH OSHA NIOSH NIOSH NIOSH NIOSH NIOSH                                                                                                           |                |                                            |                       |
| Generated By People & From Outdoors  Detaildehyde Deteine Immonia Inzene Butanone (MEK) Introform Introform Introform Introductory Introform Introductory Introform Introductory Introform Introductory  | (PPM)  100.0  250.0  25.00  1.0000  200.0  5000  2.0000  100.0                                                                                                                                                              | Using the VRP* (Prescribed OA) Plasma Off 0.01111 0.00159 0.01232 0.00252 0.00017 1016 0.000011                                                                                  | Using the IAQ Method<br>(Reduced OA)<br>Plasma On<br>0.00151<br>0.00046<br>0.00976<br>0.00035<br>0.00007<br>2590<br>0.00002                                                      | is Steady State Level Acceptable at Reduced OA Levels?  Yes Yes Yes Yes Yes Yes Yes Yes Yes Ye | Contaminant<br>Generation<br>Rate<br>(PPM)<br>0.00032<br>0.00433<br>0.14210<br>0.00015<br>0.00088<br>292<br>0.00003<br>0.00000                                                                        | Filtration Effectiveness  50% 50% 50% 50% 50% 50% 50% 50% 50%                               | Authority***  OSHA NIOSH NIOSH OSHA NIOSH NIOSH NIOSH NIOSH OSHA                                                                                                            |                |                                            |                       |
| Generated By People & From Outdoors  Detailehyde Detone Immonia Enzene Butanone (MEK) Buton (die** Inloroform Iooxane Iydrogen Sulfide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (PPM)  100.0 250.0 25.00 1.0000 200.0 5000 2,0000 100.0                                                                                                                                                                     | Using the VRP* (Prescribed OA) Plasma Off 0.01111 0.00159 0.01232 0.00252 0.00017 1016 0.00011 0.00000                                                                           | Using the IAQ Method<br>(Reduced OA)<br>Plasma On<br>0.00151<br>0.00046<br>0.00976<br>0.00035<br>0.00007<br>2590<br>0.00002<br>0.00000                                           | Is Steady State Level Acceptable at Reduced OA Levels?  Yes Yes Yes Yes Yes Yes Yes Yes Yes Ye | Contaminant Generation Rate (PPM) 0.00032 0.00433 0.14210 0.00015 0.00088 292 0.00003 0.00000 0.00000                                                                                                 | Filtration<br>Effectiveness<br>50%<br>50%<br>50%<br>50%<br>50%<br>50%<br>50%<br>50%         | Authority***  OSHA NIOSH NIOSH OSHA NIOSH NIOSH NIOSH NIOSH NIOSH OSHA NIOSH                                                                                                |                |                                            |                       |
| Generated By People & From Outdoors  Detaildehyde Detaild | (PPM)  100.0  250.0  25.00  1.0000  200.0  5000  2.0000  100.0  10.0  NA                                                                                                                                                    | Using the VRP* (Prescribed OA) Plasma Off 0.01111 0.00159 0.01232 0.00252 0.00017 1016 0.00011 0.00000 1.88094                                                                   | Using the IAQ Method<br>(Reduced OA)<br>Plasma On<br>0.00151<br>0.00046<br>0.00976<br>0.00035<br>0.00007<br>2590<br>0.00002<br>0.00002<br>0.00000<br>1.68094                     | Is Steady State Level Acceptable at Reduced OA Levels?  Yes Yes Yes Yes Yes Yes Yes Yes Yes Ye | Contaminant Generation Rate (PPM) 0.00032 0.00433 0.14210 0.00015 0.00088 292 0.00003 0.00000 0.000000 0.000000                                                                                       | Filtration Effectiveness  50% 50% 50% 50% 50% 50% 50% 50% 0% 50%                            | Authority***  OSHA NIOSH NIOSH OSHA NIOSH NIOSH NIOSH NIOSH NIOSH NIOSH NIOSH NIOSH                                                                                         |                |                                            |                       |
| Generated By People & From Outdoors  Detailehyde Detone Immonia Inzene Butanone (MEK) Indroform Oxane Vdrogen Sulfide Ethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (PPM)  100.0 250.0 25.00 1.0000 200.0 5000 2,0000 100.0 100.0 NA 200.0                                                                                                                                                      | Using the VRP* (Prescribed OA) Plasma Off 0.01111 0.00159 0.01232 0.00252 0.00017 1016 0.00011 0.00000 1.00000                                                                   | Using the IAQ Method (Reduced OA) (Reduced OA) Plasma On 0.00161 0.00046 0.00976 0.00035 0.00007 2590 0.00002 0.00000 1.68094 0.00000                                            | Is Steady State Level Acceptable at Reduced OA Levels?  Yes Yes Yes Yes Yes Yes Yes Yes Yes Ye | Contaminant Generation Rate (PPM) 0.00032 0.00433 0.14210 0.00015 0.00088 292 0.00003 0.00000 0.00000 0.00000                                                                                         | Filtration Effectiveness  50% 50% 50% 50% 50% 50% 0% 50% 0% 50% 0%                          | Authority***  OSHA NIOSH NIOSH OSHA NIOSH                                                                             |                |                                            |                       |
| Generated By People & From Outdoors  Detaile Hyde Detaile | (PPM)  100.0  250.0  250.0  1,0000  200.0  5000  2,0000  100.0  10.0  NA  200.0  25.0                                                                                                                                       | Using the VRP* (Prescribed OA) Plasma Off 0.01111 0.00159 0.01232 0.00252 0.00017 1016 0.00011 0.00000 1.68094 0.00000 0.000075                                                  | Using the IAQ Method (Reduced OA) Plasma On 0.00151 0.00046 0.00976 0.00035 0.00007 2590 0.00002 0.00000 0.00000 1.68094 0.00000 0.00000                                         | Is Steady State Level Acceptable at Reduced OA Levels?  Yes Yes Yes Yes Yes Yes Yes Yes Yes Ye | Contaminant Generation Rate (PPM) 0.00032 0.00433 0.14210 0.00015 0.00008 292 0.00003 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000                                                                 | Filtration Effectiveness 50% 50% 50% 50% 50% 50% 50% 0% 50% 50%                             | Authority***  OSHA NIOSH NIOSH OSHA NIOSH NIOSH NIOSH NIOSH NIOSH NIOSH NIOSH NA NIOSH OSHA                                                                                 |                |                                            |                       |
| Generated By People & From Outdoors  Detaildehyde Detectione Immonia Detaildehyde Detaildehyde Detectione Detaildehyde Det | (PPM)  100.0 250.0 25.00 1.0000 200.0 5000 2,0000 100.0 100.0 NA 200.0                                                                                                                                                      | Using the VRP* (Prescribed OA) Plasma Off 0.01111 0.00159 0.01232 0.00252 0.00017 1016 0.00001 0.00000 1.68094 0.00000 0.00000 0.00000 1.68094 0.00005 0.00098                   | Using the IAQ Method (Reduced OA) (Reduced OA) Plasma On 0.00161 0.00046 0.00976 0.00035 0.00007 2590 0.00002 0.00000 1.68094 0.00000                                            | Is Steady State Level Acceptable at Reduced OA Levels?  Yes Yes Yes Yes Yes Yes Yes Yes Yes Ye | Contaminant Generation Rate (PPM) 0.00032 0.00433 0.14210 0.00015 0.00088 292 0.00003 0.00000 0.00000 0.00000                                                                                         | Filtration Effectiveness  50% 50% 50% 50% 50% 50% 50% 0% 50% 50%                            | Authority***  OSHA NIOSH NIOSH OSHA NIOSH                                                                             |                |                                            |                       |
| Generated By People & From Outdoors  Detaildehyde Detone Immonia Inzene Butanone (MEK) Instron dioxide** Inloroform Oxane Vdrogen Sulfide Inthane Inth | (PPM)  100.0  250.0  25.00  1,0000  200.0  5000  2,0000  100.0  10.0  NA  200.0  25.0  1000.0                                                                                                                               | Using the VRP* (Prescribed OA) Plasma Off 0.01111 0.00159 0.01232 0.00252 0.00017 1016 0.00011 0.00000 1.68094 0.00000 0.000075                                                  | Using the IAQ Method (Reduced OA) Plasma On 0.00151 0.00016 0.00976 0.00035 0.00007 2590 0.00002 0.00000 1.68094 0.00000 0.00015 0.00015                                         | Is Steady State Level Acceptable at Reduced OA Levels?  Yes Yes Yes Yes Yes Yes Yes Yes Yes Ye | Contaminant Generation Rate (PPM) 0.00032 0.00433 0.14210 0.00015 0.00088 292 0.00003 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000                                                 | Filtration Effectiveness 50% 50% 50% 50% 50% 50% 50% 0% 50% 50%                             | Authority***  OSHA NIOSH                                                          |                |                                            |                       |
| Generated By People & From Outdoors  cetaldehyde cetone mmonia enzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (PPM)  100.0 250.0 25.00 1.0000 200.0 5000 2.0000 100.0 100.0 NA 200.0 25.0 1000.0 55.0 1000.0                                                                                                                              | Using the VRP* (Prescribed OA) Plasma Off  0.01111 0.00159 0.01232 0.00252 0.00017 1016 0.00011 0.00000 0.00000 1.88094 0.00000 0.00075 0.0098 0.00000                           | Using the IAQ Method (Reduced OA) Plasma On 0.00151 0.00046 0.00976 0.00035 0.00007 2590 0.00002 0.00000 0.00000 1.68094 0.00000 0.00015 0.00015 0.00018                         | Is Steady State Level Acceptable at Reduced OA Levels?  Yes Yes Yes Yes Yes Yes Yes Yes Yes Ye | Contaminant Generation Rate (PPM) 0.00032 0.00433 0.14210 0.00015 0.00008 292 0.00003 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000                         | Filtration Effectiveness 50% 50% 50% 50% 50% 50% 50% 50% 50% 50%                            | Authority***  OSHA NIOSH NIOSH NIOSH NIOSH NIOSH NIOSH NIOSH NIOSH OSHA NIOSH OSHA NIOSH OSHA NIOSH OSHA                                                                    |                |                                            |                       |
| Generated By People & From Outdoors  Detailed by Every Common Com | (PPM)  100.0  250.0  25.00  1,0000  200.0  50000  2,0000  100.0  NA  200.0  25.0  100.0  10.0  10.0  10.0  10.0  10.0  10.0  35.0  10.0  35.0  10.0  35.0  35.0  35.0  35.0  35.0  35.0  35.0  35.0  35.0  35.0  35.0  35.0 | Using the VRP* (Prescribed OA) Plasma Off 0.01111 0.00159 0.01232 0.00252 0.00017 1016 0.00011 0.00000 0.00000 1.88094 0.00000 0.00075 0.00988 0.00000 0.000037 0.00033 0.000533 | Using the IAQ Method (Reduced OA) Plasma On 0.00151 0.00046 0.00976 0.00035 0.00007 2590 0.00000 0.00000 1.68094 0.00000 0.00015 0.00998 0.00000 0.00000 0.00005 0.00005 0.00005 | Is Steady State Level Acceptable at Reduced OA Levels?  Yes Yes Yes Yes Yes Yes Yes Yes Yes Ye | Contaminant Generation Rate (PPM) 0.00032 0.00433 0.14210 0.00015 0.00088 292 0.00003 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000                 | Filtration Effectiveness  50% 50% 50% 50% 50% 50% 60% 50% 50% 50% 50% 50% 50% 50% 50% 50% 5 | Authority***  OSHA NIOSH NIOSH NIOSH NIOSH NIOSH NIOSH NIOSH NIOSH NIOSH NA NIOSH OSHA NIOSH OSHA NIOSH OSHA NIOSH OSHA NIOSH OSHA NIOSH OSHA NIOSH                         |                |                                            |                       |
| Generated By People & From Outdoors  etaildehyde etone mmonia nzene Butanone (MEK) rrbon dioxide** lioroform xxane drogen Sulfide ethane ethane thane thanol ethylene Chloride opane trachloroethylene luene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (PPM)  100.0 250.0 25.00 1.0000 200.0 50000 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.00 100.000 100.0000                                                                                                   | Using the VRP* (Prescribed OA) Plasma Off 0.01111 0.00159 0.01232 0.00252 0.00017 1016 0.00001 0.00000 0.00000 0.00000 0.00000 0.00007 0.00005 0.00007 0.00007 0.00007 0.00007   | Using the IAQ Method (Reduced OA) (Reduced OA) (Rlasma On 0.00161 0.00046 0.00976 0.00035 0.00007 2590 0.00002 0.00000 1.68094 0.00000 0.00015 0.00015 0.00000                   | Is Steady State Level Acceptable at Reduced OA Levels?  Yes Yes Yes Yes Yes Yes Yes Yes Yes Ye | Contaminant Generation Rate (PPM) 0.00032 0.00433 0.14210 0.00015 0.00088 292 0.00003 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 | Filtration Effectiveness  50% 50% 50% 50% 50% 50% 0% 50% 50% 50%                            | Authority***  OSHA NIOSH OSHA NIOSH OSHA NIOSH NIOSH OSHA NIOSH |                |                                            |                       |

| ROOM                  | AREA<br>(sq. ft.) | VOLUME<br>(cu. ft.) | SERVED BY | REFRIGERANT TYPE | REFRIGERANT<br>CONCENTRATION LIMIT<br>(Ib/MCf) | REFRIGERANT<br>CHARGE (lb) | MAX. ALLOWED<br>REFRIGERANT (lb) | NOTE |
|-----------------------|-------------------|---------------------|-----------|------------------|------------------------------------------------|----------------------------|----------------------------------|------|
| 106 CLASSROOM         | 665               | 6,650               | ERU-1     | R-454B           | 3.1                                            | 0.8                        | 20.6                             | 1    |
| 108 CLASSROOM         | 665               | 6,650               | ERU-1     | R-454B           | 3.1                                            | 0.8                        | 20.6                             | 1    |
| 100 CLASSROOM         | 893               | 8,332               | ERU-1     | R-454B           | 3.1                                            | 0.9                        | 25.8                             | 1    |
| 105 CLASSROOM         | 748               | 6,979               | ERU-1     | R-454B           | 3.1                                            | 0.8                        | 21.6                             | 1    |
| 107 CLASSROOM         | 748               | 6,979               | ERU-1     | R-454B           | 3.1                                            | 0.8                        | 21.6                             | 1    |
| 110 CLASSROOM         | 712               | 6,643               | ERU-1     | R-454B           | 3.1                                            | 0.8                        | 20.6                             | 1    |
| 111 CLASSROOM         | 712               | 6,643               | ERU-1     | R-454B           | 3.1                                            | 0.8                        | 20.6                             | 1    |
| EXISTING CLASSROOM    | 672               | 6,270               | ERU-1     | R-454B           | 3.1                                            | 0.7                        | 19.4                             | 1    |
| SHELTER TOILET        | 60                | 560                 | ERU-1     | R-454B           | 3.1                                            | 0.1                        | 1.7                              | 1    |
| 102 TOILET            | 146               | 1,362               | ERU-1     | R-454B           | 3.1                                            | 0.2                        | 4.2                              | 1    |
| 104 CORRIDOR          | 734               | 6,848               | ERU-1     | R-454B           | 3.1                                            | 0.8                        | 21.2                             | 1    |
| 103 TOILET            | 177               | 1,651               | ERU-1     | R-454B           | 3.1                                            | 0.2                        | 5.1                              | 1    |
| 101 EXISTING CORRIDOR | 321               | 2,995               | ERU-1     | R-454B           | 3.1                                            | 0.3                        | 9.3                              | 1    |
| 109 ALT CORRIDOR      | 255               | 2,379               | ERU-1     | R-454B           | 3.1                                            | 0.3                        | 7.4                              |      |
|                       |                   | •                   |           |                  | MAXIMUM ALLOWED REFRIGERA                      | NT:                        | 212.5                            |      |
|                       |                   |                     |           |                  | TOTAL REFRIGERANT CHARGE:                      | 7.80                       |                                  | l    |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                  | IAQP OS                                                                                                                                                                                                 | A CALCULATIO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | N - TYPICAL (                                                            | CLASSROOM                                                                                                                                                                                 |                                                                             |                                                                                                                                                                      |                |                                              |                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------------------------------------|-----------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                  |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Zone                                                                     | Table 6.1                                                                                                                                                                                 |                                                                             |                                                                                                                                                                      |                | Table 6.2                                    | Outdoor Air to        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                  |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Max                                                                      | OA per                                                                                                                                                                                    | Table 6.1                                                                   | Pz * Rp                                                                                                                                                              | Az * Ra        | Ventilation                                  | Zone (CFM) with       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                  |                                                                                                                                                                                                         | Zone Floor Area (square ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Occupancy                                                                | Occupant                                                                                                                                                                                  | cfm/ft2                                                                     | 1                                                                                                                                                                    | 1 / 1.0        | Effectiveness                                | Ez correction         |
| Zone Tag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Facility Type                                                                                                                    | Zone Use                                                                                                                                                                                                | Az                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Pz                                                                       | Rp                                                                                                                                                                                        | Ra                                                                          | Pz * Rp                                                                                                                                                              | Az * Ra        | Ez                                           | (Vbz/Ez)              |
| TYPICAL CLASSROOM (672 SF) CR 106/108/109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Educational Facilities                                                                                                           | Classrooms (AGE 9 +)                                                                                                                                                                                    | 672.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 23.0                                                                     | 10.0                                                                                                                                                                                      | 0.12                                                                        | 230                                                                                                                                                                  | 81             | 0.8                                          | 388                   |
| 11:14.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10.0                                                                                                                             |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                          |                                                                                                                                                                                           |                                                                             |                                                                                                                                                                      |                |                                              | OA required per VR    |
| one Height (feet)<br>esired Outside Air (Vo) IAQP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10.0<br>115                                                                                                                      | (1-R)V <sub>r</sub>                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                          | Carbon die                                                                                                                                                                                | oxide**                                                                     |                                                                                                                                                                      | ***OCHA NIOCH  | 1 8 W/UO maat aans                           | servative values used |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 682                                                                                                                              |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                          |                                                                                                                                                                                           |                                                                             |                                                                                                                                                                      |                |                                              |                       |
| upply Air (Vs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                  | E <sub>f</sub> A                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6000                                                                     |                                                                                                                                                                                           |                                                                             |                                                                                                                                                                      |                | .gov/niosh/npg/npg                           | syn-a.ntmi            |
| eturn Air (Vr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 682                                                                                                                              | RV r                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Vr 5000 -                                                                | 5000                                                                                                                                                                                      |                                                                             |                                                                                                                                                                      | 1 = ASHRAE & N |                                              |                       |
| ecirc. Flow Factor (R)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.00                                                                                                                             | W G = -                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3000                                                                     | _                                                                                                                                                                                         |                                                                             |                                                                                                                                                                      |                | Ventilation Rate OA                          |                       |
| entilation Effectiveness (Ez)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.8                                                                                                                              | Vo,Co Ef                                                                                                                                                                                                | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4000 -                                                                   |                                                                                                                                                                                           |                                                                             |                                                                                                                                                                      |                | IAQ Procedure OA                             |                       |
| evel of Physical Activity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Sedentary                                                                                                                        | Fr C                                                                                                                                                                                                    | $V_r + V_o$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3000                                                                     |                                                                                                                                                                                           | 2590                                                                        |                                                                                                                                                                      |                | has been provided                            |                       |
| Iter Location                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | В                                                                                                                                | <b>+</b>                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2000 -                                                                   |                                                                                                                                                                                           |                                                                             |                                                                                                                                                                      |                | nand control ventilat                        |                       |
| VAC Flow Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Constant                                                                                                                         | · .                                                                                                                                                                                                     | Occupied Zone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                          | 1012                                                                                                                                                                                      | ■ Carbon                                                                    | dioxide**                                                                                                                                                            |                | ational Research Co                          |                       |
| Outdoor Air Flow Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Constant                                                                                                                         |                                                                                                                                                                                                         | e, N, C,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1000                                                                     |                                                                                                                                                                                           |                                                                             |                                                                                                                                                                      |                | y the US Navy to pro<br>nt of concern when u |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                  |                                                                                                                                                                                                         | Steady State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                          |                                                                                                                                                                                           |                                                                             |                                                                                                                                                                      |                |                                              |                       |
| Indoor Contaminants<br>Generated By People<br>& From Outdoors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Maximum Threshold Value<br>(PPM)                                                                                                 | Steady State<br>Using the VRP*<br>(Prescribed OA)                                                                                                                                                       | Using the IAQ Method<br>(Reduced OA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Is Steady State Level<br>Acceptable at Reduced<br>OA Levels?             | Contaminant<br>Generation<br>Rate                                                                                                                                                         | Filtration<br>Effectiveness                                                 | Cognizant<br>Authority***                                                                                                                                            |                |                                              |                       |
| Generated By People<br>& From Outdoors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (PPM)                                                                                                                            | Using the VRP*<br>(Prescribed OA)<br>Plasma Off                                                                                                                                                         | Using the IAQ Method<br>(Reduced OA)<br>Plasma On                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Acceptable at Reduced<br>OA Levels?                                      | Generation<br>Rate<br>(PPM)                                                                                                                                                               | Effectiveness                                                               | Authority***                                                                                                                                                         |                |                                              |                       |
| Generated By People<br>& From Outdoors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ( <b>PPM</b> )<br>100.0                                                                                                          | Using the VRP*<br>(Prescribed OA)<br>Plasma Off<br>0.01111                                                                                                                                              | Using the IAQ Method<br>(Reduced OA)<br>Plasma On<br>0.00142                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Acceptable at Reduced OA Levels?  Yes                                    | Generation<br>Rate<br>(PPM)<br>0.00032                                                                                                                                                    | Effectiveness 50%                                                           | Authority*** OSHA                                                                                                                                                    |                |                                              |                       |
| Generated By People<br>& From Outdoors<br>.cetaldehyde<br>.cetone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (PPM)<br>100.0<br>250.0                                                                                                          | Using the VRP* (Prescribed OA) Plasma Off 0.01111 0.00158                                                                                                                                               | Using the IAQ Method<br>(Reduced OA)<br>Plasma On<br>0.00142<br>0.00043                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Acceptable at Reduced OA Levels?  Yes Yes                                | Generation<br>Rate<br>(PPM)<br>0.00032<br>0.00433                                                                                                                                         | Effectiveness 50% 50%                                                       | Authority***  OSHA NIOSH                                                                                                                                             |                |                                              |                       |
| Generated By People & From Outdoors  cetaldehyde cetone mmonia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (PPM)  100.0  250.0  25.00                                                                                                       | Using the VRP*<br>(Prescribed OA)<br>Plasma Off<br>0.01111<br>0.00158<br>0.01225                                                                                                                        | Using the IAQ Method<br>(Reduced OA)<br>Plasma On<br>0.00142<br>0.00043<br>0.00918                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Acceptable at Reduced OA Levels?  Yes Yes Yes                            | Generation Rate (PPM) 0.00032 0.00433 0.14210                                                                                                                                             | 50%<br>50%<br>50%                                                           | Authority***  OSHA NIOSH NIOSH                                                                                                                                       |                |                                              |                       |
| Generated By People & From Outdoors  cetaldehyde cetone mmonia enzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (PPM)  100.0 250.0 25.00 1.0000                                                                                                  | Using the VRP*<br>(Prescribed OA)<br>Plasma Off<br>0.01111<br>0.00158<br>0.01225<br>0.00252                                                                                                             | Using the IAQ Method<br>(Reduced OA)<br>Plasma On<br>0.00142<br>0.00043<br>0.00918<br>0.00033                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Acceptable at Reduced OA Levels?  Yes Yes Yes Yes Yes Yes                | Generation Rate (PPM) 0.00032 0.00433 0.14210 0.00015                                                                                                                                     | 50%<br>50%<br>50%<br>50%<br>50%                                             | Authority***  OSHA  NIOSH  NIOSH  OSHA                                                                                                                               |                |                                              |                       |
| Generated By People & From Outdoors  Accetaldehyde Accetone Acceto | (PPM)  100.0 250.0 25.00 1.0000 200.0                                                                                            | Using the VRP* (Prescribed OA) Plasma Off 0.01111 0.00158 0.01225 0.00252 0.00017                                                                                                                       | Using the IAQ Method<br>(Reduced OA)<br>Plasma On<br>0.00142<br>0.00043<br>0.00918<br>0.00033                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Acceptable at Reduced OA Levels?  Yes Yes Yes Yes Yes Yes Yes Yes        | Generation Rate (PPM) 0.00032 0.00433 0.14210 0.00015 0.00088                                                                                                                             | 50%<br>50%<br>50%<br>50%<br>50%<br>50%                                      | Authority***  OSHA NIOSH NIOSH OSHA NIOSH                                                                                                                            | -              |                                              |                       |
| Generated By People & From Outdoors  .ccetaldehyde .ccetone .mmonia .enzene - Butanone (MEK) .arbon dioxide**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (PPM)  100.0 250.0 25.00 1.0000 200.0 5000                                                                                       | Using the VRP*<br>(Prescribed OA)<br>Plasma Off<br>0.01111<br>0.00158<br>0.01225<br>0.00252<br>0.00017                                                                                                  | Using the IAQ Method<br>(Reduced OA)<br>Plasma On<br>0.00142<br>0.00043<br>0.00918<br>0.00033<br>0.00007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Acceptable at Reduced OA Levels?  Yes Yes Yes Yes Yes Yes Yes Yes Yes Ye | Generation Rate (PPM) 0.00032 0.00433 0.14210 0.00015 0.00088 292                                                                                                                         | 50%<br>50%<br>50%<br>50%<br>50%<br>50%<br>0%                                | Authority***  OSHA NIOSH NIOSH OSHA NIOSH NIOSH NIOSH                                                                                                                | -              |                                              |                       |
| Generated By People & From Outdoors  cetaldehyde cetone mmonia enzene - Butanone (MEK) arabon dioxide** hloroform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (PPM)  100.0 250.0 25.00 1.0000 200.0                                                                                            | Using the VRP* (Prescribed OA) Plasma Off 0.01111 0.00158 0.01225 0.00252 0.00017                                                                                                                       | Using the IAQ Method<br>(Reduced OA)<br>Plasma On<br>0.00142<br>0.00043<br>0.00918<br>0.00033                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Acceptable at Reduced OA Levels?  Yes Yes Yes Yes Yes Yes Yes Yes        | Generation Rate (PPM) 0.00032 0.00433 0.14210 0.00015 0.00088                                                                                                                             | 50%<br>50%<br>50%<br>50%<br>50%<br>50%                                      | Authority***  OSHA NIOSH NIOSH OSHA NIOSH                                                                                                                            |                |                                              |                       |
| Generated By People & From Outdoors  cetaldehyde cetone mmonia enzene Butanone (MEK) arbon dioxide** thioroform loxane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (PPM)  100.0  250.0  25.00  1.0000  200.0  5000  2.0000                                                                          | Using the VRP* (Prescribed OA) Plasma Off 0.01111 0.00158 0.01225 0.00252 0.00017 1012 0.00011                                                                                                          | Using the IAQ Method<br>(Reduced OA)<br>Plasma On<br>0.00142<br>0.00043<br>0.00918<br>0.00033<br>0.00007<br>2590                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Acceptable at Reduced OA Levels?  Yes Yes Yes Yes Yes Yes Yes Yes Yes Ye | Generation Rate (PPM) 0.00032 0.00433 0.14210 0.00015 0.00088 292 0.00003                                                                                                                 | 50%<br>50%<br>50%<br>50%<br>50%<br>50%<br>0%<br>50%                         | Authority***  OSHA NIOSH NIOSH OSHA NIOSH NIOSH NIOSH NIOSH NIOSH                                                                                                    |                |                                              |                       |
| Generated By People & From Outdoors  acetaldehyde acetone mmonia lenzene - Butanone (MEK) arbon dioxide** bihoroform jioxane lydrogen Sulfide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (PPM)  100.0 250.0 25.00 1.0000 200.0 5000 2.0000 100.0                                                                          | Using the VRP* (Prescribed OA) Plasma Off 0.01111 0.00158 0.01225 0.00252 0.00017 1012 0.00011 0.00000                                                                                                  | Using the IAQ Method<br>(Reduced OA)<br>Plasma On<br>0.00142<br>0.00043<br>0.00033<br>0.00007<br>2590<br>0.00001<br>0.00001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Acceptable at Reduced OA Levels?  Yes Yes Yes Yes Yes Yes Yes Yes Yes Ye | Generation Rate (PPM) 0.00032 0.00433 0.14210 0.00015 0.00088 292 0.0003 0.00000                                                                                                          | 50%<br>50%<br>50%<br>50%<br>50%<br>50%<br>50%<br>50%<br>50%<br>50%          | Authority***  OSHA NIOSH NIOSH OSHA NIOSH NIOSH NIOSH NIOSH OSHA                                                                                                     |                |                                              |                       |
| Generated By People & From Outdoors  Accetaldehyde Accetone Administration Accetance A | (PPM)  100.0 250.0 250.0 1.0000 200.0 50000 2.0000 100.0 10.0 NA 200.0                                                           | Using the VRP* (Prescribed OA) Plasma Off 0.01111 0.00158 0.01225 0.00252 0.00017 1012 0.00011 0.00000 0.00000 1.68094 0.00000                                                                          | Using the IAQ Method (Reduced OA) (Reduced OA) Plasma On 0.00142 0.00043 0.00918 0.00033 0.00007 2590 0.00001 0.00000 1.88094 0.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Acceptable at Reduced OA Levels?  Yes Yes Yes Yes Yes Yes Yes Yes Yes Ye | Generation Rate (PPM) 0.00032 0.00433 0.14210 0.00015 0.00008 292 0.00003 0.00000 0.00000 0.00000 0.00000                                                                                 | 50% 50% 50% 50% 50% 50% 50% 50% 50% 50%                                     | Authority***  OSHA NIOSH NIOSH OSHA NIOSH                                                                      |                |                                              |                       |
| Generated By People & From Outdoors  cetaldehyde cetone ce | (PPM)  100.0  250.0  25.00  1.0000  200.0  5000  2.0000  100.0  10.0  NA  200.0  25.0                                            | Using the VRP* (Prescribed OA) Plasma Off 0.01111 0.00158 0.01225 0.00252 0.00017 1012 0.00011 0.00000 1.68094 0.00000 0.000075                                                                         | Using the IAQ Method (Reduced OA) Plasma On 0.00142 0.00043 0.00018 0.00007 2590 0.00001 0.00000 1.68094 0.00000 0.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Acceptable at Reduced OA Levels?  Yes Yes Yes Yes Yes Yes Yes Yes Yes Ye | Generation Rate (PPM) 0.00032 0.00033 0.14210 0.00015 0.00008 292 0.00003 0.00000 0.00000 0.00000 0.00000 0.00000                                                                         | 50% 50% 50% 50% 50% 50% 50% 50% 50% 60% 50% 50% 50% 50% 50% 50% 50%         | Authority***  OSHA NIOSH NIOSH OSHA NIOSH                                                                |                |                                              |                       |
| Generated By People & From Outdoors  cetaldehyde cetone mmonia enzene  Butanone (MEK) arbon dioxide** thiloroform lioxane lydrogen Sulfide lethane lethanol lethylene Chloride ropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (PPM)  100.0 250.0 250.0 25.00 1.0000 200.0 5000 2.0000 100.0 11.0 NA 200.0 25.0 100.0                                           | Using the VRP* (Prescribed OA) Plasma Off 0.01111 0.00158 0.01225 0.00252 0.00017 1012 0.00001 0.00000 1.688094 0.00000 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005                                 | Using the IAQ Method (Reduced OA) (Reduced OA) Plasma On 0.00142 0.00043 0.000918 0.00003 0.000007 2.590 0.00001 0.00000 0.00000 1.68094 0.00000 0.00001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Acceptable at Reduced OA Levels?  Yes Yes Yes Yes Yes Yes Yes Yes Yes Ye | Generation Rate (PPM) 0.00032 0.00433 0.14210 0.00015 0.00008 292 0.00003 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000                                                         | 50% 50% 50% 50% 50% 50% 50% 50% 50% 50%                                     | Authority***  OSHA NIOSH                                 |                |                                              |                       |
| Generated By People & From Outdoors  cetaldehyde cetone mmonia enzene - Butanone (MEK) arbon dioxide** hitloroform ioxane lydrogen Sulfide lethane lethanol lethylene Chloride ropane etrachloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (PPM)  100.0 250.0 25.00 1.0000 200.0 5000 2.0000 100.0 100.0 10.0 NA 200.0 25.0 1000.0 5.0000 25.0 1000.0 5.0000                | Using the VRP* (Prescribed OA) Plasma Off  0.01111 0.00158 0.01225 0.00252 0.00017 1012 0.00011 0.00000 0.00000 1.88094 0.00000 0.00075 0.00998 0.00000                                                 | Using the IAQ Method (Reduced OA) Plasma On 0.00142 0.00043 0.00918 0.00033 0.00007 2590 0.00001 0.00000 0.00000 1.88094 0.00000 0.00014 0.00998 0.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Acceptable at Reduced OA Levels?  Yes Yes Yes Yes Yes Yes Yes Yes Yes Ye | Generation Rate (PPM) 0.00032 0.00433 0.14210 0.00015 0.00008 292 0.00003 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000                                                         | 50% 50% 50% 50% 50% 50% 50% 50% 50% 50%                                     | Authority***  OSHA NIOSH NIOSH NIOSH NIOSH NIOSH NIOSH NIOSH NIOSH OSHA NIOSH OSHA NIOSH OSHA NIOSH OSHA                                                             |                |                                              |                       |
| Generated By People & From Outdoors  Accetaldehyde Accetance Accet | (PPM)  100.0 250.0 25.00 1.0000 200.0 5000 2.0000 100.0 NA 200.0 25.0 100.0 5.0000 100.0 5.0000                                  | Using the VRP* (Prescribed OA) Plasma Off 0.01111 0.00158 0.01225 0.00252 0.00017 1012 0.00011 0.00000 1.68094 0.00000 0.000075 0.0098 0.00000 0.00000                                                  | Using the IAQ Method (Reduced OA) (Reduced OA) Plasma On 0.00142 0.00043 0.00918 0.00003 0.00007 2590 0.00000 0.00000 1.68094 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 | Acceptable at Reduced OA Levels?  Yes Yes Yes Yes Yes Yes Yes Yes Yes Ye | Generation Rate (PPM) 0.00032 0.00433 0.14210 0.00015 0.00008 292 0.00003 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000                         | 50% 50% 50% 50% 50% 50% 50% 50% 60% 60% 50% 50% 50% 50% 50% 50% 50% 50% 50% | Authority***  OSHA NIOSH NA NIOSH NA NIOSH OSHA OSHA OSHA                                                      |                |                                              |                       |
| Generated By People & From Outdoors  acetaldehyde acetone mmonia enzene  - Butanone (MEK) arbon dioxide** hloroform loixane lydrogen Sulfide lethane lethane lethane lethanol ethylone Chloride ropane etrachloroethylene oluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (PPM)  100.0 250.0 250.0 1.0000 200.0 50000 100.0 100.0 NA 200.0 25.0 1000.0 5.0000 100.0000 100.0000                            | Using the VRP* (Prescribed OA) Plasma Off  0.01111 0.00158 0.01225 0.00252 0.00017 1012 0.00011 0.00000 0.00000 1.68094 0.00000 0.00075 0.00998 0.00000 0.00000 0.00007 0.00000 0.00007 0.00007 0.00075 | Using the IAQ Method (Reduced OA) (Reduced OA) Plasma On 0.00142 0.00043 0.000918 0.00003 0.000007 2590 0.00001 0.00000 1.68094 0.00000 0.00014 0.00098 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00005 0.000068                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Acceptable at Reduced OA Levels?  Yes Yes Yes Yes Yes Yes Yes Yes Yes Ye | Generation Rate (PPM) 0.00032 0.00433 0.14210 0.00015 0.00015 0.00008 292 0.00003 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 | 50% 50% 50% 50% 50% 50% 50% 50% 50% 50%                                     | Authority***  OSHA NIOSH NIOSH OSHA NIOSH OSHA NIOSH OSHA NIOSH OSHA NIOSH |                |                                              |                       |
| Generated By People & From Outdoors  cetaldehyde cetone mmonia enzene Butanone (MEK) arbon dioxide** hiltorform ioxane ydrogen Sulfide lethane lethanel lethydene Chloride ropane etrachloroethane etrachloroethane etrachloroethylene oluene 1,1,1 - Trichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (PPM)  100.0  250.0  25.00  1.0000  200.0  5000  2.0000  100.0  10.0  NA  200.0  25.0  1000.0  5.000  100.000  100.000  350.0000 | Using the VRP* (Prescribed OA) Plasma Off 0.01111 0.00158 0.01225 0.00252 0.00017 1012 0.00011 0.00000 0.00000 1.68094 0.00000 0.00075 0.00998 0.000037 0.00037 0.00032 0.00032                         | Using the IAQ Method (Reduced OA) Plasma On 0.00142 0.00043 0.00033 0.00007 2590 0.00001 0.00000 1.68094 0.00000 0.00000 0.000014 0.00998 0.00000 0.00005 0.00005 0.00005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Acceptable at Reduced OA Levels?  Yes Yes Yes Yes Yes Yes Yes Yes Yes Ye | Generation Rate (PPM) 0.00032 0.00033 0.14210 0.00015 0.00008 292 0.00003 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000                 | 50% 50% 50% 50% 50% 50% 50% 50% 50% 50%                                     | Authority***  OSHA NIOSH NIOSH OSHA NIOSH NIOSH NIOSH NIOSH OSHA NIOSH OSHA NIOSH OSHA NIOSH OSHA NIOSH NIOSH OSHA NIOSH NIOSH OSHA NIOSH OSHA NIOSH                 |                |                                              |                       |
| Generated By People & From Outdoors  cetaldehyde cetone mmonia enzene  - Butanone (MEK) arbon dioxide** hloroform ioxane ydrogen Sulfide lethane lethane lethane lethanol ethyloroethoroethoroethoroethoroethoroethoroethane etrachloroethylene oluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (PPM)  100.0 250.0 250.0 1.0000 200.0 50000 100.0 100.0 NA 200.0 25.0 1000.0 5.0000 100.0000 100.0000                            | Using the VRP* (Prescribed OA) Plasma Off  0.01111 0.00158 0.01225 0.00252 0.00017 1012 0.00011 0.00000 0.00000 1.68094 0.00000 0.00075 0.00998 0.00000 0.00000 0.00007 0.00000 0.00007 0.00007 0.00075 | Using the IAQ Method (Reduced OA) (Reduced OA) Plasma On 0.00142 0.00043 0.000918 0.00003 0.000007 2590 0.00001 0.00000 1.68094 0.00000 0.00014 0.00098 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00005 0.000068                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Acceptable at Reduced OA Levels?  Yes Yes Yes Yes Yes Yes Yes Yes Yes Ye | Generation Rate (PPM) 0.00032 0.00433 0.14210 0.00015 0.00015 0.00008 292 0.00003 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 | 50% 50% 50% 50% 50% 50% 50% 50% 50% 50%                                     | Authority***  OSHA NIOSH NIOSH OSHA NIOSH OSHA NIOSH OSHA NIOSH OSHA NIOSH |                |                                              |                       |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                 |                                                                                                                                                                                                  | Zone                                                                                               |        | Table 6.1                                                                                                                                                                                         |                                                                         |                                                                                                                                                           |                | Table 6.2                                  | Outdoor Air to        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------------------------------------|-----------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                 |                                                                                                                                                                                                  | Max                                                                                                | - 1    | OA per                                                                                                                                                                                            | Table 6.1                                                               | Pz * Rp                                                                                                                                                   | Az * Ra        | Ventilation                                | Zone (CFM) wit        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                 | Zone Floor Area (square ft)                                                                                                                                                                      | Occupanc                                                                                           | ., I   | Occupant                                                                                                                                                                                          | cfm/ft2                                                                 |                                                                                                                                                           | /              | Effectiveness                              | Ez correction         |
| Zone Tag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Facility Type                                                                                                                                                                                                                                                        | Zone Use                                                                                                                                                                                        | Az                                                                                                                                                                                               | Pz                                                                                                 | '      | Rp                                                                                                                                                                                                | Ra                                                                      | Pz * Rp                                                                                                                                                   | Az * Ra        | Ez                                         | (Vbz/Ez)              |
| TYPICAL CLASSROOM (748 SF) CR 105/107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Educational Facilities                                                                                                                                                                                                                                               | Classrooms (AGE 9 +)                                                                                                                                                                            | 748.0                                                                                                                                                                                            | 26.0                                                                                               |        | 10.0                                                                                                                                                                                              | 0.12                                                                    | 260                                                                                                                                                       | 90             | 0.8                                        | 437                   |
| 111 ICAL CLASSICOGNI (748 SI ) CN 103/107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | EddCational Facilities                                                                                                                                                                                                                                               | Classiconis (AGE 5 1)                                                                                                                                                                           | 746.0                                                                                                                                                                                            | 20.0                                                                                               |        | 10.0                                                                                                                                                                                              | 0.12                                                                    | 200                                                                                                                                                       | 30             | 0.0                                        | OA required per \     |
| one Height (feet)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10.0                                                                                                                                                                                                                                                                 | (1-R)V <sub>r</sub>                                                                                                                                                                             |                                                                                                                                                                                                  |                                                                                                    |        |                                                                                                                                                                                                   |                                                                         |                                                                                                                                                           |                |                                            | Ort required per t    |
| esired Outside Air (Vo) IAQP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 130                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                 |                                                                                                                                                                                                  |                                                                                                    |        | Carbon di                                                                                                                                                                                         | oxide**                                                                 |                                                                                                                                                           | ***OSHA NIOSH  | & WHO most cons                            | servative values used |
| upply Air (Vs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 682                                                                                                                                                                                                                                                                  | E <sub>f</sub> A                                                                                                                                                                                |                                                                                                                                                                                                  |                                                                                                    |        |                                                                                                                                                                                                   |                                                                         |                                                                                                                                                           |                | .gov/niosh/npg/npg                         |                       |
| eturn Air (Vr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 682                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                 |                                                                                                                                                                                                  |                                                                                                    | 6000   | 5000                                                                                                                                                                                              |                                                                         |                                                                                                                                                           | 1 = ASHRAE & N |                                            | oyii aiiiiii          |
| ecirc. Flow Factor (R)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.00                                                                                                                                                                                                                                                                 | VRV.                                                                                                                                                                                            |                                                                                                                                                                                                  | V <sub>r</sub>                                                                                     | 5000   |                                                                                                                                                                                                   |                                                                         |                                                                                                                                                           |                | Ventilation Rate OA                        | Flow Rate             |
| entilation Effectiveness (Ez)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.8                                                                                                                                                                                                                                                                  | Vo,Co Fee                                                                                                                                                                                       |                                                                                                                                                                                                  | •                                                                                                  | 4000   | _                                                                                                                                                                                                 |                                                                         |                                                                                                                                                           |                | IAQ Procedure OA                           |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sedentary                                                                                                                                                                                                                                                            | L Er_                                                                                                                                                                                           |                                                                                                                                                                                                  |                                                                                                    |        |                                                                                                                                                                                                   | 2590                                                                    |                                                                                                                                                           |                |                                            |                       |
| evel of Physical Activity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                      | F <sub>r</sub> C                                                                                                                                                                                | $V_r + V_o$                                                                                                                                                                                      |                                                                                                    | 3000   |                                                                                                                                                                                                   | 2390                                                                    |                                                                                                                                                           |                | has been provided                          |                       |
| ilter Location                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | B                                                                                                                                                                                                                                                                    | <b>†</b>                                                                                                                                                                                        |                                                                                                                                                                                                  |                                                                                                    | 2000   |                                                                                                                                                                                                   |                                                                         |                                                                                                                                                           |                | nand control ventilat                      |                       |
| IVAC Flow Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Constant                                                                                                                                                                                                                                                             |                                                                                                                                                                                                 | Occupied Zone                                                                                                                                                                                    |                                                                                                    | 1000   | 1015                                                                                                                                                                                              | ■ Carbon                                                                | dioxide**                                                                                                                                                 |                | ational Research Co                        |                       |
| outdoor Air Flow Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Constant                                                                                                                                                                                                                                                             |                                                                                                                                                                                                 | e, N, C,                                                                                                                                                                                         |                                                                                                    | 1000   |                                                                                                                                                                                                   |                                                                         |                                                                                                                                                           |                | the US Navy to pro<br>it of concern when t |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                 |                                                                                                                                                                                                  |                                                                                                    | 0      | 1 2                                                                                                                                                                                               | 3                                                                       |                                                                                                                                                           |                | ntrol the other conta                      |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                 |                                                                                                                                                                                                  |                                                                                                    |        |                                                                                                                                                                                                   |                                                                         |                                                                                                                                                           | ,              |                                            |                       |
| Indoor Contaminants<br>Generated By People                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Maximum Threshold Value                                                                                                                                                                                                                                              | Steady State<br>Using the VRP*                                                                                                                                                                  | Steady State<br>Using the IAQ Method                                                                                                                                                             | Is Steady State<br>Acceptable at Re                                                                | educed | Contaminant<br>Generation                                                                                                                                                                         | Filtration                                                              | Cognizant                                                                                                                                                 | ]              |                                            |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Maximum Threshold Value<br>(PPM)                                                                                                                                                                                                                                     | Using the VRP*<br>(Prescribed OA)                                                                                                                                                               | Using the IAQ Method<br>(Reduced OA)                                                                                                                                                             |                                                                                                    | educed | Generation<br>Rate                                                                                                                                                                                | Filtration<br>Effectiveness                                             | Cognizant<br>Authority***                                                                                                                                 | ]              |                                            |                       |
| Generated By People<br>& From Outdoors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (PPM)                                                                                                                                                                                                                                                                | Using the VRP*<br>(Prescribed OA)<br>Plasma Off                                                                                                                                                 | Using the IAQ Method<br>(Reduced OA)<br>Plasma On                                                                                                                                                | Acceptable at Ro<br>OA Levels                                                                      | educed | Generation<br>Rate<br>(PPM)                                                                                                                                                                       | Effectiveness                                                           | Authority***                                                                                                                                              |                |                                            |                       |
| Generated By People<br>& From Outdoors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (PPM)<br>100.0                                                                                                                                                                                                                                                       | Using the VRP* (Prescribed OA) Plasma Off 0.01111                                                                                                                                               | Using the IAQ Method<br>(Reduced OA)<br>Plasma On<br>0.00155                                                                                                                                     | Acceptable at Ro<br>OA Levels<br>Yes                                                               | educed | Generation<br>Rate<br>(PPM)<br>0.00032                                                                                                                                                            | Effectiveness                                                           | Authority*** OSHA                                                                                                                                         |                |                                            |                       |
| Generated By People<br>& From Outdoors<br>.cetaldehyde<br>.cetone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (PPM)<br>100.0<br>250.0                                                                                                                                                                                                                                              | Using the VRP* (Prescribed OA) Plasma Off 0.01111 0.00158                                                                                                                                       | Using the IAQ Method<br>(Reduced OA)<br>Plasma On<br>0.00155<br>0.00047                                                                                                                          | Acceptable at RoOA Levels  Yes Yes                                                                 | educed | Generation<br>Rate<br>(PPM)<br>0.00032<br>0.00433                                                                                                                                                 | Effectiveness 50% 50%                                                   | Authority***  OSHA NIOSH                                                                                                                                  |                |                                            |                       |
| Generated By People & From Outdoors  acetaldehyde acetone mmonia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (PPM)<br>100.0<br>250.0<br>25.00                                                                                                                                                                                                                                     | Using the VRP* (Prescribed OA) Plasma Off 0.01111 0.00158 0.01229                                                                                                                               | Using the IAQ Method<br>(Reduced OA)<br>Plasma On<br>0.00155<br>0.00047<br>0.01004                                                                                                               | Acceptable at Re OA Levels  Yes Yes Yes Yes                                                        | educed | Generation<br>Rate<br>(PPM)<br>0.00032<br>0.00433<br>0.14210                                                                                                                                      | 50%<br>50%<br>50%                                                       | Authority***  OSHA NIOSH NIOSH                                                                                                                            |                |                                            |                       |
| Generated By People & From Outdoors  scetaldehyde scetone summonia lenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (PPM)  100.0 250.0 25.00 1.0000                                                                                                                                                                                                                                      | Using the VRP*<br>(Prescribed OA)<br>Plasma Off<br>0.01111<br>0.00158<br>0.01229<br>0.00252                                                                                                     | Using the IAQ Method<br>(Reduced OA)<br>Plasma On<br>0.00155<br>0.00047<br>0.01004<br>0.00036                                                                                                    | Acceptable at Re OA Levels  Yes Yes Yes Yes Yes Yes                                                | educed | Generation Rate (PPM) 0.00032 0.00433 0.14210 0.00015                                                                                                                                             | 50%<br>50%<br>50%<br>50%<br>50%                                         | Authority***  OSHA  NIOSH  NIOSH  OSHA                                                                                                                    |                |                                            |                       |
| Generated By People & From Outdoors  acetaldehyde acetone mmonia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (PPM)<br>100.0<br>250.0<br>25.00                                                                                                                                                                                                                                     | Using the VRP* (Prescribed OA) Plasma Off 0.01111 0.00158 0.01229                                                                                                                               | Using the IAQ Method<br>(Reduced OA)<br>Plasma On<br>0.00155<br>0.00047<br>0.01004                                                                                                               | Acceptable at Re OA Levels  Yes Yes Yes Yes                                                        | educed | Generation<br>Rate<br>(PPM)<br>0.00032<br>0.00433<br>0.14210                                                                                                                                      | 50%<br>50%<br>50%                                                       | Authority***  OSHA NIOSH NIOSH                                                                                                                            |                |                                            |                       |
| Generated By People & From Outdoors  .cetaldehyde .cetone .mmonia .enzene - Butanone (MEK) .arbon dioxide**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (PPM)  100.0  250.0  25.00  1.0000  200.0                                                                                                                                                                                                                            | Using the VRP*<br>(Prescribed OA)<br>Plasma Off<br>0.01111<br>0.00158<br>0.01229<br>0.00252<br>0.00017                                                                                          | Using the IAQ Method<br>(Reduced OA)<br>Plasma On<br>0.00155<br>0.00047<br>0.01004<br>0.00036                                                                                                    | Acceptable at Re OA Levels  Yes Yes Yes Yes Yes Yes Yes Yes                                        | educed | Generation Rate (PPM) 0,00032 0,00433 0,14210 0,00015 0,00088                                                                                                                                     | 50%<br>50%<br>50%<br>50%<br>50%<br>50%                                  | Authority***  OSHA NIOSH NIOSH OSHA NIOSH                                                                                                                 |                |                                            |                       |
| Generated By People & From Outdoors  .cetaldehyde .cetonemmonia .enzene .Butanone (MEK) .arbon dioxide**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (PPM)  100.0  250.0  25.00  1.0000  200.0  5000                                                                                                                                                                                                                      | Using the VRP*<br>(Prescribed OA)<br>Plasma Off<br>0.01111<br>0.00158<br>0.01229<br>0.00252<br>0.00017<br>1015                                                                                  | Using the IAQ Method<br>(Reduced OA)<br>Plasma On<br>0.00155<br>0.00047<br>0.01004<br>0.00036<br>0.00008                                                                                         | Acceptable at Re OA Levels  Yes Yes Yes Yes Yes Yes Yes Yes Yes Y                                  | educed | Generation Rate (PPM) 0.00032 0.00433 0.14210 0.00015 0.00088 292                                                                                                                                 | 50%<br>50%<br>50%<br>50%<br>50%<br>50%<br>50%                           | Authority***  OSHA NIOSH NIOSH OSHA NIOSH NIOSH NIOSH                                                                                                     |                |                                            |                       |
| Generated By People & From Outdoors  cetaldehyde cetone mmonia enzene - Butanone (MEK) arabon dioxide** thloroform lioxane lydrogen Sulfide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (PPM)  100.0 250.0 25.00 1.0000 200.0 5000 2.0000 100.0                                                                                                                                                                                                              | Using the VRP* (Prescribed OA) Plasma Off 0.01111 0.00158 0.01229 0.00252 0.00017 1015 0.00011 0.00000                                                                                          | Using the IAQ Method (Reduced OA) Plasma On 0.00155 0.00047 0.01004 0.00036 0.00008 2590 0.00002 0.00000                                                                                         | Acceptable at R- OA Levels  Yes Yes Yes Yes Yes Yes Yes Yes Yes Y                                  | educed | Generation Rate (PPM) 0.00032 0.00433 0.14210 0.00015 0.00008 292 0.00003 0.00000 0.00000                                                                                                         | 50%<br>50%<br>50%<br>50%<br>50%<br>50%<br>50%<br>50%<br>50%<br>50%      | Authority***  OSHA NIOSH NIOSH OSHA NIOSH NIOSH NIOSH NIOSH NIOSH NIOSH OSHA NIOSH                                                                        |                |                                            |                       |
| Generated By People & From Outdoors  cetaldehyde cetone mmonia enzene Butanone (MEK) arbon dioxide** hibroform iloxane ydrogen Sulfide lethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (PPM)  100.0 250.0 250.0 1,0000 200.0 5000 2,0000 100.0 10.0 NA                                                                                                                                                                                                      | Using the VRP* (Prescribed OA) Plasma Off 0.01111 0.00158 0.01229 0.00252 0.00017 1015 0.00011 0.00000 1.68094                                                                                  | Using the IAQ Method (Reduced OA) Plasma On 0.00155 0.00047 0.01004 0.00036 0.00008 2590 0.00002 0.00000 0.00000 1.68094                                                                         | Acceptable at Rr<br>OA Levels<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Ye | educed | Generation Rate (PPM) 0.00032 0.00433 0.14210 0.00015 0.00088 292 0.00003 0.00000 0.000000 0.000000                                                                                               | 50%<br>50%<br>50%<br>50%<br>50%<br>50%<br>50%<br>50%<br>50%<br>50%      | Authority***  OSHA NIOSH NIOSH OSHA NIOSH NIOSH NIOSH NIOSH NIOSH NIOSH NIOSH NIOSH NIOSH                                                                 |                |                                            |                       |
| Generated By People & From Outdoors  Accetaldehyde Accetone Mommonia Benzene - Butanone (MEK) Carbon dioxide** Abloroform Bioxane Bydrogen Sulfide Bethanel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (PPM)  100.0 250.0 25.00 1.0000 200.0 50000 2.0000 1100.0 10.0 NA 200.0                                                                                                                                                                                              | Using the VRP* (Prescribed OA) Plasma Off 0.01111 0.00158 0.01229 0.00252 0.00017 1015 0.00011 0.00001 0.00000 1.68094 0.00000                                                                  | Using the IAQ Method (Reduced OA) (Reduced OA) Plasma On 0.00155 0.00047 0.01004 0.00036 0.00008 2590 0.00002 0.00000 1.68094 0.00000                                                            | Acceptable at R- OA Levels  Yes Yes Yes Yes Yes Yes Yes Yes Yes Y                                  | educed | Generation Rate (PPM) 0.00032 0.00433 0.14210 0.00015 0.00008 292 0.00003 0.00000 0.00000 0.00000 0.00000                                                                                         | 50% 50% 50% 50% 50% 50% 50% 50% 50% 50%                                 | Authority***  OSHA NIOSH NIOSH OSHA NIOSH                                                           |                |                                            |                       |
| Generated By People & From Outdoors  cetaldehyde cetone mmonia enzene - Butanone (MEK) arabon dioxide** thloroform iloxane dydrogen Sulfide lethane lethanel lethylene Chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (PPM)  100.0  250.0  25.00  1.0000  200.0  5000  2.0000  100.0  NA  200.0  25.0                                                                                                                                                                                      | Using the VRP* (Prescribed OA) Plasma Off 0.01111 0.00158 0.01229 0.00252 0.00017 1015 0.00011 0.00000 0.00000 1.68094 0.00000 0.00075                                                          | Using the IAQ Method (Reduced OA) Plasma On 0.00155 0.00047 0.01004 0.00036 0.00008 2590 0.00002 0.00000 0.00000 1.68094 0.00000 0.000015                                                        | Acceptable at R- OA Levels  Yes Yes Yes Yes Yes Yes Yes Yes Yes Y                                  | educed | Generation Rate (PPM) 0.00032 0.00433 0.14210 0.00015 0.00088 292 0.00003 0.00000 0.00000 0.00000 0.00000 0.00000                                                                                 | 50% 50% 50% 50% 50% 50% 50% 50% 50% 50%                                 | Authority***  OSHA NIOSH NIOSH OSHA NIOSH                                               |                |                                            |                       |
| Generated By People & From Outdoors  Accetaldehyde Accetone Acceto | (PPM)  100.0 250.0 250.0 1,0000 200.0 5000 2,0000 100.0 10.0 NA 200.0 25.0 1000.0                                                                                                                                                                                    | Using the VRP* (Prescribed OA) Plasma Off 0.01111 0.00158 0.01229 0.00252 0.00017 1015 0.000011 0.00000 0.00000 1.68094 0.00000 0.00075 0.00098                                                 | Using the IAQ Method (Reduced A) Plasma On 0.00155 0.00047 0.01004 0.00036 0.00008 2590 0.00002 0.00000 1.68094 0.00000 0.00000 0.00001 0.00001 0.00001                                          | Acceptable at R- OA Levels  Yes Yes Yes Yes Yes Yes Yes Yes Yes Y                                  | educed | Generation Rate (PPM) 0.00032 0.00433 0.14210 0.00015 0.00088 292 0.00003 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000                                                 | 50% 50% 50% 50% 50% 50% 50% 50% 50% 50%                                 | Authority***  OSHA  NIOSH          |                |                                            |                       |
| Generated By People & From Outdoors  cetaldehyde cetone mmonia enzene - Butanone (MEK) arbon dioxide** hloroform ioxane ydrogen Sulfide lethane lethanel lethylene Chloride ropane etrachloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (PPM)  100.0 250.0 25.00 1.0000 200.0 5000 2.0000 100.0 100.0 NA 200.0 S000 2.0000 100.0 S000 S000 S000 S000 S000 S00                                                                                                                                                | Using the VRP* (Prescribed OA) Plasma Off  0.01111 0.00158 0.01229 0.00252 0.00017 1015 0.00011 0.00000 0.00000 1.68094 0.00000 0.00075 0.00075 0.00075                                         | Using the IAQ Method (Reduced OA) Plasma On 0.00155 0.00047 0.01004 0.00036 0.00036 0.00008 2590 0.00002 0.00000 0.00000 1.68094 0.00000 0.00015 0.00098 0.00098                                 | Acceptable at R- OA Levels  Yes Yes Yes Yes Yes Yes Yes Yes Yes Y                                  | educed | Generation Rate (PPM) 0.00032 0.00433 0.14210 0.00015 0.00008 292 0.00003 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000                                                 | 50% 50% 50% 50% 50% 50% 50% 50% 50% 50%                                 | Authority***  OSHA NIOSH NIOSH OSHA NIOSH NIOSH NIOSH NIOSH OSHA NIOSH OSHA NIOSH OSHA NIOSH OSHA NIOSH OSHA OSHA                                         |                |                                            |                       |
| Generated By People & From Outdoors  cetaldehyde cetone mmonia enzene Butanone (MEK) arbon dioxide** hibroform ioxane ydrogen Sulfide lethane lethanol lethydene Chloride ropane etrachloroethylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (PPM)  100.0 250.0 25.00 1.0000 200.0 50000 2.0000 100.0 NA 200.0 25.0 1000.0 55.0 1000.0 100.0 100.0                                                                                                                                                                | Using the VRP* (Prescribed OA) Plasma Off 0.01111 0.00158 0.01229 0.00252 0.00017 1015 0.00011 0.00000 1.68094 0.00000 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005  | Using the IAQ Method (Reduced OA) Plasma On 0.00155 0.00047 0.01004 0.00036 0.00008 2590 0.00002 0.00000 0.00000 1.68094 0.00000 0.00005 0.00005 0.000098 0.00000 0.00000                        | Acceptable at Re OA Levels  Yes Yes Yes Yes Yes Yes Yes Yes Yes Y                                  | educed | Generation Rate (PPM) 0.00032 0.00433 0.14210 0.00015 0.00008 292 0.00003 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000         | 50% 50% 50% 50% 50% 50% 50% 50% 60% 50% 50% 50% 50% 50% 50% 50% 50% 50% | Authority***  OSHA NIOSH NA NIOSH OSHA NIOSH OSHA OSHA                                              |                |                                            |                       |
| Generated By People & From Outdoors  accetaldehyde cetone mmonia enzene - Butanone (MEK) arbon dioxide** hibrorform loixane lydrogen Sulfide lethane lethanel lethanel lethylene Chloride ropane etrachloroethylene oluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (PPM)  100.0 250.0 25.00 1.0000 200.0 50000 2.0000 100.0 NA 200.0 5.0000 1.00 0 5.0000 1.00 0 1.00 0 1.00 0 1.00 0 1.00 0 1.00 0 1.00 0 1.00 0 1.00 0 1.00 0 1.00 0 1.00 0 1.00 0 1.00 0 1.00 0 1.00 0 1.00 0 1.00 0 1.00 0 1.00 0 1.00 0 1.00 0 1.00 0 0 1.00 0 0 0 | Using the VRP* (Prescribed OA) Plasma Off 0.01111 0.00158 0.01229 0.00252 0.00017 1015 0.00011 0.00000 0.00000 1.68094 0.00000 0.00075 0.00998 0.00000 0.00000 0.00000 0.00000 0.000075 0.00998 | Using the IAQ Method (Reduced A) Plasma On 0.00155 0.00047 0.01004 0.00036 0.00008 2590 0.00000 0.00000 1.88094 0.00000 0.00001 0.00001 0.00001 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000  | Acceptable at R- OA Levels  Yes Yes Yes Yes Yes Yes Yes Yes Yes Y                                  | educed | Generation Rate (PPM) 0.00032 0.00433 0.14210 0.00015 0.00088 292 0.00003 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 | 50% 50% 50% 50% 50% 50% 50% 50% 50% 50%                                 | Authority***  OSHA NIOSH NIOSH OSHA NIOSH OSHA NIOSH OSHA NIOSH |                |                                            |                       |
| Generated By People & From Outdoors  cetaldehyde cetone mmonia enzene Butanone (MEK) arbon dioxide** hibroform ioxane ydrogen Sulfide ethane lethanel lethanel etethanel etethydene Chloride ropane etrachloroethane eterachloroethydene oluene 1,1 - Trichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (PPM)  100.0  250.0  250.0  1.0000  200.0  5000  2.0000  100.0  NA  200.0  25.0  100.0  100.0  100.0  100.00  350.0000  100.0000                                                                                                                                     | Using the VRP* (Prescribed OA) Plasma Off 0.01111 0.00158 0.01229 0.00252 0.00017 1015 0.00011 0.00000 0.00000 1.68094 0.00000 0.00075 0.00998 0.00000 0.00037 0.00033 0.00033                  | Using the IAQ Method (Reduced OA) Plasma On 0.00155 0.00047 0.01004 0.00008 2590 0.00002 0.00000 0.00000 1.68094 0.00000 0.00015 0.00998 0.00000 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 | Acceptable at Rio OA Levels  Yes Yes Yes Yes Yes Yes Yes Yes Yes Y                                 | educed | Generation Rate (PPM) 0.00032 0.00433 0.14210 0.00015 0.00008 292 0.00003 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000         | 50% 50% 50% 50% 50% 50% 50% 50% 50% 50%                                 | Authority***  OSHA NIOSH NIOSH OSHA NIOSH NIOSH NIOSH NIOSH NIOSH NIOSH NIOSH NA NIOSH OSHA NIOSH OSHA NIOSH OSHA NIOSH OSHA NIOSH NIOSH OSHA NIOSH       |                |                                            |                       |
| Generated By People & From Outdoors  Detailed by Generated By People Betanone (MEK) Butanone (ME | (PPM)  100.0 250.0 25.00 1.0000 200.0 50000 2.0000 100.0 NA 200.0 5.0000 1.00 0 5.0000 1.00 0 1.00 0 1.00 0 1.00 0 1.00 0 1.00 0 1.00 0 1.00 0 1.00 0 1.00 0 1.00 0 1.00 0 1.00 0 1.00 0 1.00 0 1.00 0 1.00 0 1.00 0 1.00 0 1.00 0 1.00 0 1.00 0 1.00 0 0 1.00 0 0 0 | Using the VRP* (Prescribed OA) Plasma Off 0.01111 0.00158 0.01229 0.00252 0.00017 1015 0.00011 0.00000 0.00000 1.68094 0.00000 0.00075 0.00998 0.00000 0.00000 0.00000 0.00000 0.000075 0.00998 | Using the IAQ Method (Reduced A) Plasma On 0.00155 0.00047 0.01004 0.00036 0.00008 2590 0.00000 0.00000 1.88094 0.00000 0.00001 0.00001 0.00001 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000  | Acceptable at R- OA Levels  Yes Yes Yes Yes Yes Yes Yes Yes Yes Y                                  | educed | Generation Rate (PPM) 0.00032 0.00433 0.14210 0.00015 0.00088 292 0.00003 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 | 50% 50% 50% 50% 50% 50% 50% 50% 50% 50%                                 | Authority***  OSHA NIOSH NIOSH OSHA NIOSH OSHA NIOSH OSHA NIOSH |                |                                            |                       |

| ROOM                  | AREA<br>(sq. ft.) | VOLUME<br>(cu. ft.) | SERVED BY         | REFRIGERANT TYPE | REFRIGERANT<br>CONCENTRATION LIMIT<br>(Ib/MCf) | REFRIGERANT<br>CHARGE (lb) | MAX. ALLOWED<br>REFRIGERANT (lb) | ١ |
|-----------------------|-------------------|---------------------|-------------------|------------------|------------------------------------------------|----------------------------|----------------------------------|---|
| 106 CLASSROOM         | 665               | 6,650               | IHP-1             | R-454B           | 3.1                                            | 7.7                        | 20.6                             |   |
| 108 CLASSROOM         | 665               | 6,650               | IHP-2             | R-454B           | 3.1                                            | 7.7                        | 20.6                             |   |
| 100 CLASSROOM         | 893               | 8,332               | TWHP-A x 2        | R-32             | 3.1                                            | 3.2                        | 25.8                             |   |
| 105 CLASSROOM         | 748               | 7,480               | TWHP-A x 2        | R-32             | 3.1                                            | 3.20                       | 23.2                             |   |
| 107 CLASSROOM         | 748               | 7,480               | TWHP-A x 2        | R-32             | 3.1                                            | 3.2                        | 23.2                             |   |
| 110 CLASSROOM         | 712               | 7,120               | TWHP-A x 2        | R-32             | 3.1                                            | 3.2                        | 22.1                             |   |
| 111 CLASSROOM         | 712               | 7,120               | TWHP-A x 2        | R-32             | 3.1                                            | 3.2                        | 22.1                             |   |
| EXISTING CLASSROOM    | 672               | 6,270               | IHP-7             | R-454B           | 3.1                                            | 3.2                        | 19.4                             |   |
| SHELTER TOILET        | 60                | 560                 | ERU-1 ONLY        |                  |                                                |                            |                                  |   |
| 102 TOILET            | 146               | 1,362               | IHP-6             | R-454B           | 3.1                                            | 2.3                        | 4.2                              |   |
| 104 CORRIDOR          | 734               | 6,848               | IHP-3             | R-454B           | 3.1                                            | 4.5                        | 21.2                             |   |
| 103 TOILET            | 177               | 1,651               | IHP-5             | R-454B           | 3.1                                            | 2.3                        | 5.1                              |   |
| 101 EXISTING CORRIDOR | 321               | 2,995               | <b>ERU-1 ONLY</b> |                  |                                                |                            |                                  |   |
| 109 ALT CORRIDOR      | 255               | 2,379               | IHP-4             | R-454B           | 3.1                                            | 4.5                        | 7.4                              |   |
|                       |                   |                     |                   |                  | MAXIMUM ALLOWED REFRIGERA                      | NT:                        | 215.0                            | 1 |
|                       |                   |                     |                   |                  | TOTAL REFRIGERANT CHARGE:                      | 48.10                      |                                  | - |

minimum minimu

# Dewberry

2 Riverchase Office Plaza Suite 205 Hoover, AL 35244 (205) 988-2069 www.dewberry.com Project Number :

50189343

### **REFRIGERANT LEAK DETECTION CONTROLS:**

I. THE LEAK DETECTION SYSTEM SHALL CONSIST OF ONE OR MORE REFRIGERANT LEAK DETECTION SENSORS INSTALLED IN THE HVAC EQUIPMENT BY THE HVAC EQUIPMENT MANUFACTURER.

- A. UTILIZE A SET POINT, NONADJUSTABLE IN THE FIELD, TO GENERATE AN OUTPUT SIGNAL TO INITIATE MITIGATION ACTIONS.
- B. FIELD RECALIBRATION OF THE REFRIGERANT DETECTION SYSTEM SHALL NOT BE PERMITTED.
- C. BE CAPABLE OF DETECTING THE PRESENCE OF A SPECIFIED REFRIGERANT CORRESPONDING TO THE REFRIGERANT DESIGNATION OF THE REFRIGERANT CONTAINED IN THE REFRIGERATION SYSTEM.
- D. HAVE ACCESS FOR REPLACEMENT OF REFRIGERANT DETECTION SYSTEM COMPONENTS.
- E. HALF SELF-DIAGNOSTICS TO DETERMINE OPERATIONAL STATUS OF THE SENSING
- F. ENERGIZE AIR CIRCULATION FANS OF THE EQUIPMENT UPON FAILURE OF A SELF DIAGNOSTIC CHECK.
- G. GENERATE AN OUTPUT SIGNAL IN NOT MORE THAN 30 SECONDS WHEN EXPOSED TO A
- REFRIGERANT CONCENTRATION OF 25% LFL (+0%,-1%).
- 2. WHEN THE SYSTEM DETECTS A LEAK, THE FOLLOWING MITIGATION ACTIONS WILL BE INITIATED UNTIL REFRIGERANT HAS NOT BEEN DETECTED FOR 5 MINUTES:
  - A. SUPPLY FANS SHALL BE ENERGIZED TO RUN AT 100% FAN SPEED.
  - B. COMPRESSOR OPERATION SHALL BE DISABLED.
  - C. ALL ZONING DAMPERS, SUCH AS VAV TERMINAL UNITS SHALL BE OPENED TO 100%.
  - D. ALL ELECTRIC HEAT OR GAS HEAT SHALL BE DISABLED.
- 3. THE BUILDING FIRE AND SMOKE SYSTEMS SHALL OVERRIDE THIS FUNCTION.
- 4. IF THE REFRIGERANT SENSOR HAS A FAULT, IS AT THE END OF ITS USEFUL LIFE, OR IS DISCONNECTED, THE AC UNIT WILL INITIATE THE ABOVE MITIGATION ACTIONS. MITIGATION ACTIONS SHALL BE VERIFIED BY DISCONNECTING THE SENSOR.
- 5. THE REFRIGERANT SENSORS DO NOT NEED ROUTINE MAINTENANCE. USE ONLY MANUFACTURER-APPROVED SENSORS WHEN REPLACEMENT IS REQUIRED.

### **HVAC EQUIPMENT REFRIGERANT GENERAL NOTES:**

- 1. THIS PROJECT IS DESIGNED WITH HVAC EQUIPMENT WHICH USE A2L REFRIGERANT.
- 2. THE MECHANICAL DESIGN WILL COMPLY WITH THE 2024 INTERNATIONAL MECHANICAL CODE, ASHRAE 15-2022, AND ASHRAE 34-2022.
- 3. THE INSTALLATION SHALL ALSO COMPLY WITH THESE STANDARDS.

AMOUNT OF REFRIGERANT PER OCCUPIED SPACE CALCULATIONS SUMMARY

(cu. ft.)

8,332

6,848 1,651

2,995

OCCUPIED SPACE COMPLIES WITH 2024 IMC CHAPTER 11, ASHRAE 15-2022, AND ASHRAE 34-2022.

THE MAX. ALLOWED REFRIGERANT IS THE WORST CASE BETWEEN R-32 AND R-454B.

(sq. ft.)

108 CLASSROOM 100 CLASSROOM

105 CLASSROOM 107 CLASSROOM

EXISTING CLASSROOM SHELTER TOILET 102 TOILET

104 CORRIDOR 103 TOILET

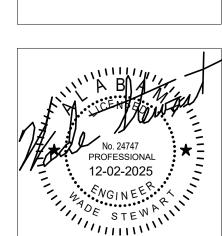
101 EXISTING CORRIDOR

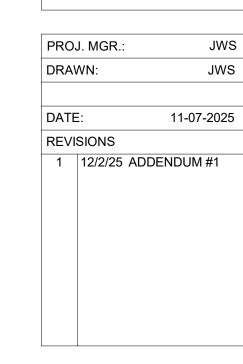
109 ALT CORRIDOR

CHARGE (lb)

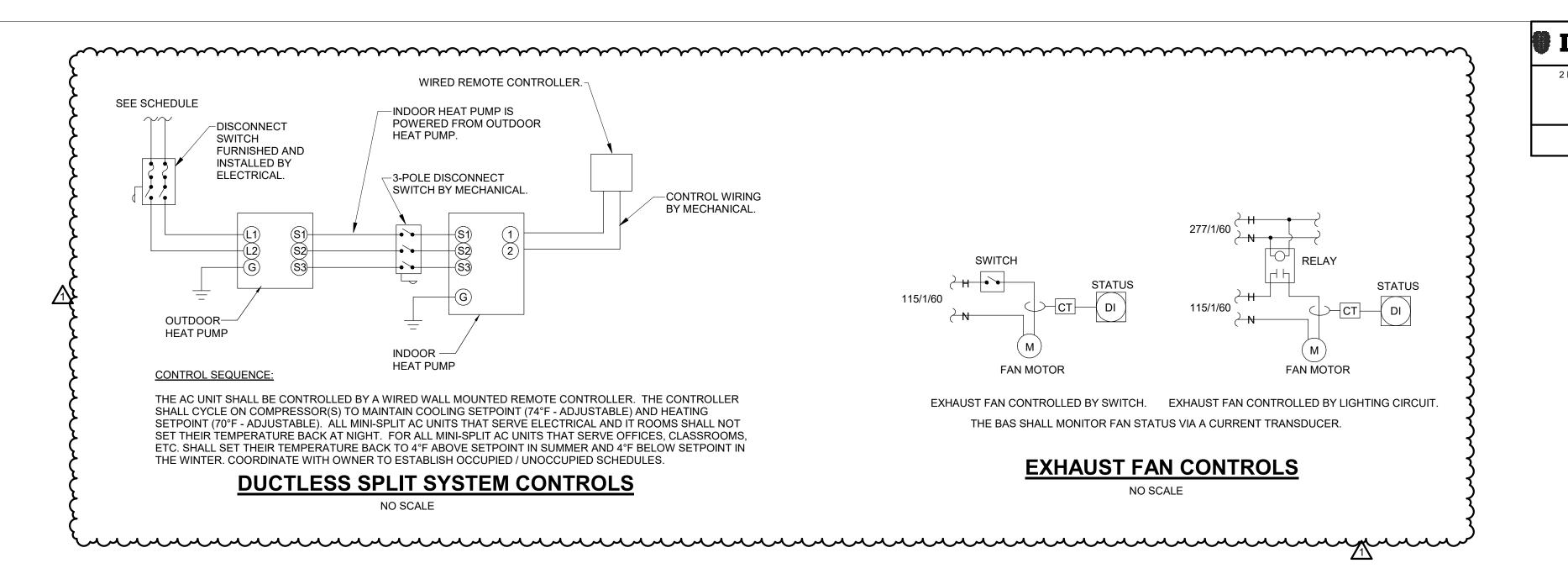
REFRIGERANT (lb)

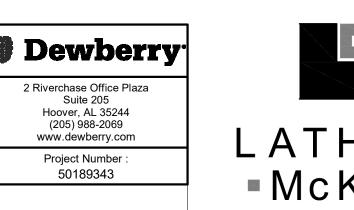
4. HVAC EQUIPMENT SHALL BE MANUFACTURED TO COMPLY WITH THESE STANDARDS, AS WELL AS UL 484, UL/CSA 60335-2-40, AND UL/CSA 60355-2-89.




MECHANICAL CALCULATIONS

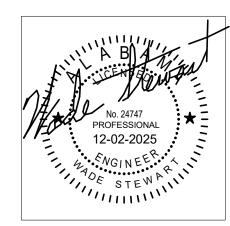

SHEET TITLE:

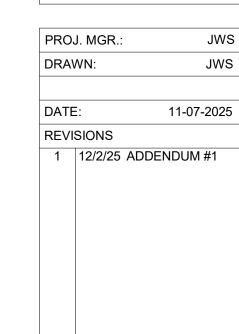

AND CONTROLS



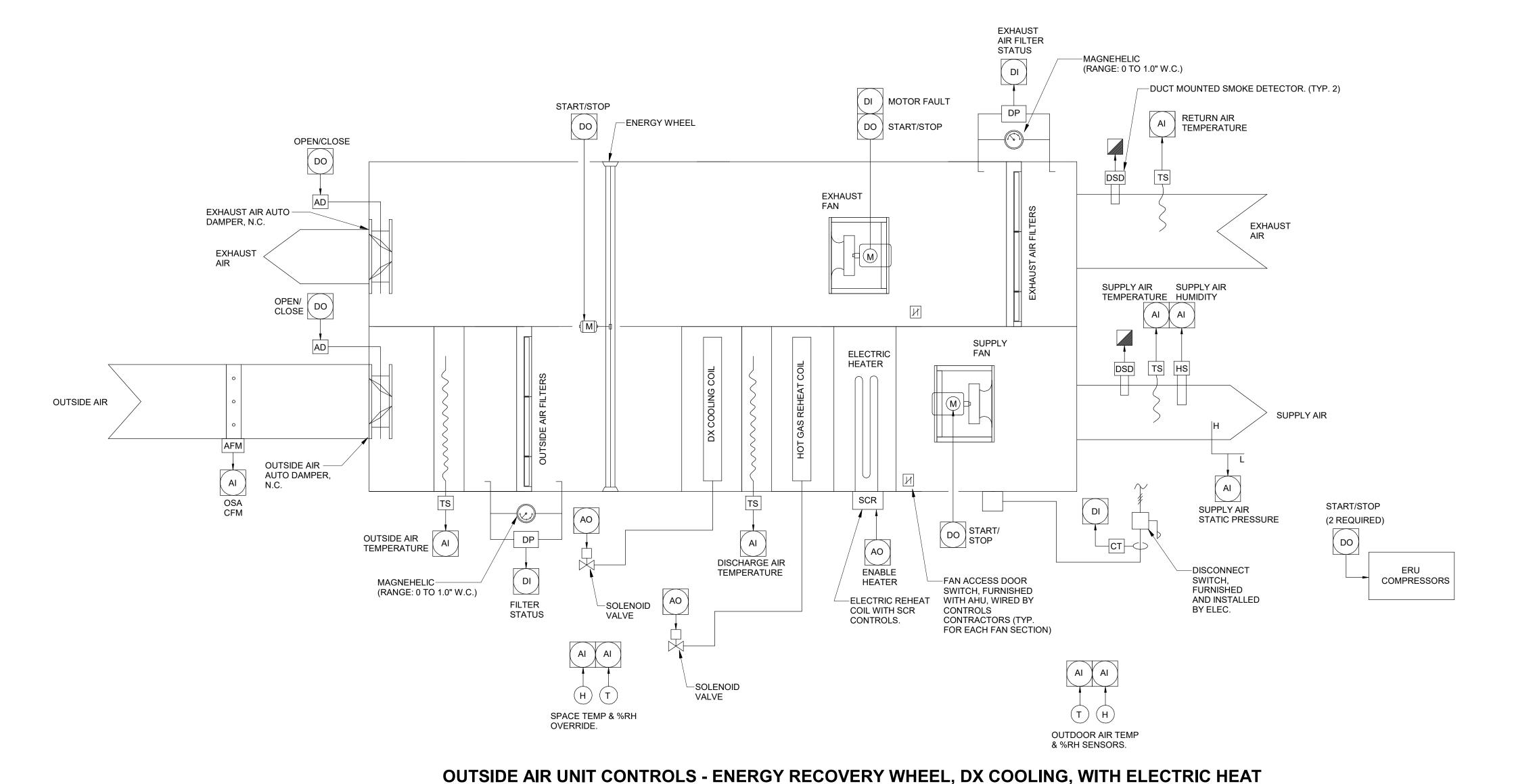


JOB NO. SHEET NO:






SHEET TITLE: MECHANICAL CONTROLS





SHEET NO:



NO SCALE

### **ENERGY RECOVERY UNIT CONTROL SEQUENCE:**

THE ENERGY RECOVERY UNIT (ERU) SHALL BE STARTED AND STOPPED BY THE BUILDING AUTOMÁTION SYSTEM SUBJECT TO AN OWNER'S OCCUPANCY SCHEDULE AND SUBJECT TO ALL INTERNAL UNIT SAFETIES. OCCUPIED AND UNOCCUPIED HOURS SHALL BE DETERMINED BY THE OWNER AND SHALL BE FULLY ADJUSTABLE AT THE BUILDING AUTOMATION SYSTEM FRONT END BY THE OWNER.

DURING UNOCCUPIED MODE, THE EXHAUST AIR AND OUTSIDE AIR AUTO DAMPERS SHALL BE CLOSED AND THE EXHAUST AIR AND OUTSIDE AIR FANS SHALL BE OFF.

OCCUPIED MODE:
DURING OCCUPIED HOURS, THE EXHAUST AIR AND OUTSIDE AIR DAMPERS SHALL OPEN. ONCE THE DAMPERS ARE PROVEN TO BE OPEN. THE SUPPLY FAN AND EXHAUST FAN SHALL BE STARTED BY THE BUILDING AUTOMATION SYSTEM AND SHALL RUN CONTINUOUSLY. TEST AND BALANCE SHALL ADJUST THE FAN SPEED AT THE VARIABLE FREQUENCY DRIVE FOR EACH FAN TO PROVIDE THE SCHEDULED OUTSIDE AIR AND EXHAUST AIR CFM. THIS FAN SPEED SHALL BE SET AND SHALL BE DISPLAYED AT THE BAS FRONT END. THE FAN SPEED FOR THE OUTSIDE AIR AND EXHAUST AIR FANS SHALL NOT VARY.

THE BAS SHALL STAGE ON COMPRESSORS AND OPEN/CLOSE SOLENOID VALVE(S) AT THE DX COIL TO MAINTAIN A 54°F SUPPLY AIR TEMPERATURE AS MEASURED AT THE TEMPERATURE SENSOR DOWNSTREAM OF THE DX COIL. THE HOT GAS REHEAT COIL IN THE ERU SHALL STAGE ON/OFF TO MAINTAIN A TEMPERATURE LEAVING THE ERU OF 72°F (SUMMER) AND 70°F (WINTER) AS MEASURED AT THE DISCHARGE AIR TEMPÉRATURE SENSOR. ÍN THE WINTER, THE ELECTRIC HEATER SHALL STAGE ON/OFF TO PROVIDE A LEAVING TEMPERATURE OF 70°F (ADJUSTABLE).

<u>DEHUMIDIFICATION MODE:</u>
IF THE SPACE MOUNTED RELATIVE HUMIDITY SENSOR RISES ABOVE 60% RH FOR LONGER THAN 10 MINUTES DURING OCCUPIED OR UNOCCUPIED MODES, THE ERU SHALL GO INTO DEHUMIDIFICATION MODE. IN DEHUMIDIFICATION MODE, THE EXHAUST AIR AND OUTSIDE AIR DAMPERS SHALL BE OPEN, THE EXHAUST AIR AND OUTSIDE AIR FANS SHALL RUN, THE CONDENSING UNIT SHALL BE ON AND PROVIDING 100% COOLING, AND THE HOT GAS REHEAT COIL SHALL STAGE ON/OFF TO MAINTAIN A SPACE TEMPERATURE OF 72°F (SUMMER) AND 70°F (WINTER). ONCE THE HUMIDITY RETURNS TO BELOW 60%RH, THE ERU SHALL RETURN TO NORMAL OCCUPIED OR UNOCCUPIED